Description of the publication:


Andrzej Sikora, Teodor Gotszalk, Roman Szeloch


Combined shear force – tunnelling microscope with interferometric tip oscillation detection for local surface investigation and oxidation

















In view of the rapid growth of interest in AFMs in the investigation of surface properties and local surface modification, the modular Shear–force/Tunneling Microscope is herein described. The presented setup is based on the fiber Fabry–Perot interferometer for the measurement of conductive microtip oscillation. An advantage of this system is that quantitative measurements of tip vibration amplitude are easily performed. Moreover, that presented setup is extremaly sensitive and compact. Using teh aforementioned measurement system, quantitative measurement of robe dither motion with a resolution of 0.01nmRMS in a 100Hz bandwidth is possible. The optical detection system allows one to apply voltage to the conductive microtip. In this case the microtip can be used as an electron beam (e–beam) source for nanolitography or as a collector of field emmision current flowing between the surface and the microprobe. Some preliminary results of experiments will be also presented.


♦ K. Karrai, R. D. Grober, Piezoelectric Tip–Sample Distance Control for Near Field Optical Microscopes, Appl. Phys. Lett. 66, 1842 (1995)
♦ G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Surface Tunneling Microscopy, Phys. Rev. Lett. 49,57 (1982)
♦ J. U. Schmidt, H. Bergander L. M. Eng, Shear Force Interaction in the Viscous Damping Regime Studied at 100pN Force Resolution, J. Appl. Phs. 87, 3108 (2000)
♦ R. Garcia, M. Calleja and H. Rohrer, J . Pattering of Silicon Surfaces with Non–Contact Atomic Force Microscopy: Field Induced Formation of Nanometer–Size Water Bridges, Appl. Phys. 86, 1898 (1999)
♦ J. A. Dagata, T. Inoue, J. Itoh, K. Matsumoto and H. Yokoyama, The Role of Space Charge in Scanned Probe Oxidation,J. Appl. Phys. 84, 6891 (1998)
♦ M. Calleja and R. Garcia, Nano–Oxidation of Silicon Surfaces by Non–Contact Atomic–Force Microscopy: Size Dependence on Voltage and Pulse Duration, Appl. Phys. Lett. 76, 3427 (2000)
♦ M. Tello and R. Garcia, Nano–Oxidation of Silicon Surfaces: Comparison of Non–Contact and Contact Atomic–Force Microscopy Methods, Appl. Phys. Lett. 79, 424 (2001)
♦ J. A. Dagata, F. Perez–Murano, G. Abadal, K. Morimoto, T. Inoue, J. Itoh and H. Yokoyama, A Predictive Model for Scanned Probe Oxidation Kinetics, Appl. Phys. Lett. 76, 2710 (2000)
♦ K. Matsumoto, Y. Gotoh, T Maeda, J. A. Dagata and J. S. Harris, Room–Temperature Single–Electron Memory Made by pulse–Mod Atomic Force Microscopy Nano–Oxidation Process on an Atomically Flat alpha–Alumina Substrate, Appl. Phys. Lett. 76, 239 (2000)
♦ E. S. Snow, P. M. Campbell, F. A. Buot, D. Park, C. R. K. Marrian and R. Magno, A Metal/Oxide Tunneling Transistor, Appl. Phys. Lett, 73, 262 (1998)
♦ R. Held, T. Vancura, T. Heinzel, K. Ensslin, M. Holland and W. Wegscheider, In–Plane Gates and Nanostructures Fabricated by Direct Oxidation of Semiconductor Heterostructures with an Atomic Force Microscope, Appl. Phys. Lett. 73, 262 (1998)
♦ E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, S. C. Minne, T. Hunt and C. F. Quate, Terabit–Per–Square–Inch Data Storage with the Atomic Force Microscope, Appl. Phys. Lett. 75, 3566 (1999)
♦ V. Bouchiat, M. Faucher, C. Thirion, W. Wernsdorfer, T. Fournier and B. Pannetier, Josephson Junctions and Superconducting Quantum Interference Devices Made By Local Oxidation of Niobium Ultra–Thin Films, Appl. Phys. Lett. 79, 123 (2001)
♦ S. C. Minne, J. D. Adams, G. Yaralioglu, S. R. Manalis, A. Atalar and C. F. Quate, Centimeter Scale Atomic Force Microscope Imaging and Lithography, Appl. Phys. Lett. 73, 1742 (1998)
♦ R. Watersa, B. Van Zeghbroeck, Fowler–Nordheim, Tunneling of Holes Through Thermally Grown SiO2 on p+ 6H–SiC, Appl. Phys. Lett. 73 (25), 3692 (1998)
♦ J. Planes, F. Houze, P. Chretien, O. Schneegans, Conducting Probe Atomic Force Microscopy Applied to Organic Conducting Blends, Appl. Phys. Lett. 79 (18), 2993 (2001)
♦ D. W. van der Weide, P. Neuzil, The Nanoscilloscope: Combined Topography and AC Field Probing with a Micromachined Tip, J. Vac. Sci. Technol. B 14 (6), 4144 (1996)
♦ M. P. O'Boyle, T. T. Hwang, H. K. Wickramasinghe, Atomic Force Microscopy of Work Functions on the Nanometer Scale, Appl. Phys. Lett. 74 (18), 2641 (1999)
♦ A. Sikora, T. Gotszalk, R. Szeloch, A. Sankowska, A. Marendziak, Modularny mikroskop tunelowy i sił atomowych do badań własności elektrycznych nanostruktur, conference materials "KKE Kołobrzeg 2003", 79 (2003)

Example figure:

The simplified graph representing setup of the combined shear force/ emission microscope.