Description of the publication:


Andrzej Sikora, Teodor Gotszalk, Anna Sankowska, Ivo W Rangelow


Application of scanning shear–force microscope for fabrication of nanostructures


Journal of telecommunications and information technology













AFM, nanostructures fabrication, Shear Force microscopy


In view of the rapid growth of interest in AFMs in surface properties investigation and local surface modification we describe here AFM microscope with optical tip oscillation detection. The modular Shear–force/Tunnelling Microscope for surface topography measurement and nanoanodisation is described. The measurement instrument presented here is based on the fiber Fabry–Perot interferometer for the measurement of the conductive microtip oscilation which is used as nano e–beam for local surface anodisation. An advantage of this system is that quatitative measurements of tip vibration amplitude are easily performed.


♦ K. Karrai, R. D. Grober, ''Piezoelectric tip–sample distance control for near field optical microscopes'', Appl. Phys. Lett. 66 (1842) 1995
♦ G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, ''Tunneling through a controllable vacuum gap'', Appl. Phys. Lett. 40, 178 (1982)
♦ R. Garcia, M. Calleja, and H. Rohrer, J. ''Patterning of silicon surfaces with noncontact atomic force microscopy: Field–induced formation of nanometer–size water bridges'', Appl. Phys. 86, 1898 (1999).
♦ J. A. Dagata, T. Inoue, J. Itoh, K. Matsumoto, and H. Yokoyama, ''Role of space charge in scanned probe oxidation'', J. Appl. Phys. 84, 6891 (1998).
♦ M. Calleja and R. Garcia, ''Nano–oxidation of silicon surfaces by noncontact atomic–force microscopy: Size dependence on voltage and pulse duration'', Appl. Phys. Lett. 76, 3427 (2000).
♦ M. Tello and R. Garcia, ''Nano–oxidation of silicon surfaces: Comparison of noncontact and contact atomic–force microscopy methods'', Appl. Phys. Lett. 79, 424 (2001).
♦ J. A. Dagata, F. Perez–Murano, G. Abadal, K. Morimoto, T. Inoue, J. Itoh, and H. Yokoyama, "Predictive model for scanned probe oxidation kinetics"", Appl. Phys. Lett. 76, 2710 (2000).
♦ K. Matsumoto, Y. Gotoh, T. Maeda, J. A. Dagata, and J. S. Harris, ''Room–temperature single–electron memory made by pulse–mode atomic force microscopy nano oxidation process on atomically flat–alumina substrate'', Appl. Phys. Lett. 76, 239 (2000).
♦ E. S. Snow, P. M. Campbell, F. A. Buot, D. Park, C. R. K. Marrian, and R. Magno, ''A metal/oxide tunneling transistor'', Appl. Phys. Lett. 72, 3071 (1998).
♦ R. Held, T. Vancura, T. Heinzel, K. Ensslin, M. Holland, and W. Wegscheider, ''In–plane gates and nanostructures fabricated by direct oxidation of semiconductor heterostructures with an atomic force microscope'', Appl. Phys. Lett. 73, 262 (1998).
♦ E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, S. C. Minne, T. Hunt, and C. F. Quate, ''Terabit–per–square–inch data storage with the atomic force microscope'', Appl. Phys. Lett. 75, 3566 (1999).
♦ V. Bouchiat, M. Faucher, C. Thirion, W. Wernsdorfer, T. Fournier, and B. Pannetier, ''Josephson junctions and superconducting quantum interference devices made by local oxidation of niobium ultrathin films'', Appl. Phys. Lett. 79, 123 (2001).
♦ F. S. Chien, C.L. Wu, Y.C. Chou, T. T. Chen, S. Gwo, and W.F. Hsieh, Appl. Phys. Lett. 75, ''Nanomachining of (110) oriented silicon by scanning probe lithography and anisotropic wet etching'', 2429(1999).
♦ S. C. Minne, J. D. Adams, G. Yaralioglu, S. R. Manalis, A. Atalar, and C. F. Quate, ''Centimeter scale atomic force microscope imaging and lithography'', Appl. Phys. Lett. 73, 1742 (1998).
♦ A. Sikora, T. Gotszalk, R. Szeloch, A. Sankowska, A. Marendziak ''Modularny mikroskop tunelowy i sił atomowych do badań własności elektrycznych nanostruktur'', conference materials Krajowa Konferencja Elektroniki (in press), Kołobrzeg 2003

Example figure:

The structure developed with the local anodic oxidizing of the surface of the silicon using the combined shear force/ emission microscope.