Description of the publication:

Authors:

Sikora, A., Gotszalk, T., Szeloch, R.

Title:

Combined shear force – Tunneling microscope as a nanometer resolution diagnostic tool for thin oxide films

Journal:

Scientific Papers of the Institute of Electrical Engineering Fundamentals of Wroclaw Technical University Conferences

Year:

2007

Vol:

46

Pages:

69–74

ISSN/ISBN:

03249441

DOI:

-----

Link:

http://baztech.icm.edu.pl/baztech/cgi-bin/btgetdoc.cgi?BPW9-0004-0045/

Keywords:

AFM; Oxide layer investigation; Shear–force microscopy; Tunelling microscopy

Abstract:

Very fast development of VLSI integrated circuits (Very Large Scale of Integration) lately even called ULSI (Ultra–Large Scale Integration) requires single structures downsizing. Thereby channel length of MOS (Metal Oxide Semiconductor) transistors as well as source and drain plugs sizes are reduced. Also, the thickness of oxide layer in the gate area decreases as well. In order to perform test of dielectric layer with nanometer resolution in lateral plane, one can use AFM with conductive tip, where after biasing the sample, current flow to the tip allows to estimate the electrical properties of the surface. In the article we will present modular Shear–force/Tunneling Microscope. The metallic scanning microtip is used as a nano e–beam and it allows to measure the local surface emission and investigate the quality of dielectric layer in semiconductor chip.

References:

♦ MOORE, G.E., The experts look ahead. Cramming more components onto integrated circuits (1965) Electronics, 38 (8)
♦ Chou, S., (2004) Extending Moore's Law in the nanotechnology Era, , Intel
♦ Bohr, M., (2002) Intel Unveils, Intel's 90 nm Technology: Moore's Law and More, , Intel
♦ Hirose, M., Koh, M., Mizubayashi, W., Murakami, H., Shibahara, K., Miyazaki, S., Fundamental limit of gate oxide thickness scaling in advanced MOSFETs (2000) Semicond. Sci. Technol, 15, p. 485
♦ Wu, E.Y., Stathis, J.H., Han, L.K., Ultra–thin oxide reliability for ULSI applications (2000) Semicond. Sci. Technol, 15, p. 425
♦ Yu, Y.J., Guo, Q., Zeng, X., Li, H., Liu, S.H.Z.S.C., Low voltage stress–induced leakage current as a probe of interface defects and a monitor of the oxide reliability (2005) Semicond. Sci. Technol, 20, pp. 1116–1121
♦ Jie, B.B., Lo, K.F., Quek, E., Chu, S., Sah, C.T., Tunnel DCIV diagnosis of ultrathin gate oxide metal–oxidesilicon transistors (2004) Semicond. Sci. Technol, 19, p. 870
♦ Binnig, G., Quate, C.F., Gerber, C.H., Atomic Force Microscope (1986) Physical Reviev Letters, 56 (9), p. 930
♦ O'boyle, M.P., Hwang, T.T., Wickramasinghe, H.K., Atomic force microscopy of work functions on the nanometer scale (1999) Applied Physics Lett, 74 (18), p. 2641
♦ Waters, R., Van Zeghbroeck, B., Fowler–Nordheim tunneling of holes through thermally grown SiO2 on p+ 6H–SiC (1998) Applied Physics Lett, 73 (25), p. 3692
♦ Hassanien, A., Tokumoto, M., Kumazawa, Y., Kataura, H., Maniwa, Y., Suzuki, S., Achiba, Y., Atomic structure and electronic properties of single–wall carbon nanotubes probed by scanning tunneling microscope at room temperature (1998) Applied Physics Lett, 73 (26), p. 3839
♦ Radnoczi, G., Safran, G., Kovacs, I., Geszti, O., Biro, L., Amorphous carbon nitride films: Structure and electrical properties (2000) Acta Physica Slovaca, 50 (6), p. 679
♦ Jia, J.F., Inoue, K., Hasegawa, Y., Yang, W.S., Sákurai, T., Local work function for Cu(111)–Au surface studied by scanning tunneling microscopy (1997) J. Vac. Sci. Technol., B, 15 (6), p. 1861
♦ Ichizli, V., Hartnagel, H.L., Mimura, H., Shimawaki, H., Yokoo, K., Field emission from porous (100) GaP with modified morphology (2001) Applied Physics Lett, 79 (24), p. 4016
♦ Van Der Weide, D.W., Neuzil, P., The Nanoscilloscope: Combined Topography and AC Field Probing with a Micromachined Tip (1996) J. Vac. Sci. Technol., B, 14 (6), p. 4144
♦ Porti, M., Blasco, X., Nafría, M., Aymerich, X., Electrical characterization and fabrication of SiO2 based metal–oxide–semiconductor nanoelectronic devices with atomic force microscopy (2003) Nanotechnology, 14, p. 584
♦ Lauritsen, J.P., Foster, A.S., Olesen, G.H., Christensen, M.C., Kühnle, A., Helveg, S., Rostrup–Nielsen, J.R., Besenbacher, F., Chemical identification of point defects and adsorbates on a metal oxide surface by atomic force microscopy (2006) Nanotechnology, 17, p. 3436
♦ Fowler, R.H., Nordheim, L., (1928) Proc. Roy. Soc. Lond., A, 119, p. 173
♦ Sikora, A., Gotszalk, T., Szeloch, R., (2005) Nanoscale Calibration Standards and Methods, p. 144., G. Wilkening, L. Koenders Eds, VCH, Berlin
♦ Garcia, R., Calleja, M., Rohrer, H.J., Patterning of silicon surfaces with noncontact atomic force microscopy: Field–induced formation of nanometr–size water bridges (1999) Appl. Phys. Lett, 86, p. 1898
♦ Calleja, M., Garcia, R., Nano–oxidation of silicon surfa ces by noncontact atomic–force microscopy: Size dependence on voltage and pulse duration (2001) Appl. Phys. Lett, 79, p. 424
♦ Sikora, A., Gotszalk, T., Sankowska, A., Rangelow, I., (2005) Application of Scanning Shear Force Microscope for fabrication of nanostructures, Journal of telecommunications and information technology, 1, p. 81

Example figure:

The simplified graph representing setup of the combined shear force/ emission microscope.