Description of the publication:

Authors:

Sikora, A., Gotszalk, T., Szeloch, R.

Title:

Nanoscale evaluation of thin oxide film homogeneity with combined shear force emission microscope

Journal:

Materials Science–Poland

Year:

2009

Vol:

27 (4)

Pages:

1171–1178

ISSN/ISBN:

01371339

DOI:

-----

Link:

http://materialsscience.pwr.wroc.pl/bi/vol27no4/articles/ms_23_7sikora.pdf

Keywords:

AFM; Field emission; Gate oxide tests; Shear force microscopyh

Abstract:

Very fast development of large scale integrated circuits causes downsizing of the structures. Due to this fact, the thickness of oxide layer in the gate area decreases as well. In order to perform test of dielectric layer with nanometer resolution in a lateral plane, one can use AFM with a conductive tip. Biased tips can be used to measure current flow to the surface of the sample in order estimate its electrical properties. In the paper a modular shear force emission microscope has been presented. A metallic scanning microtip is used as a nano e–beam and it allows one to measure the local surface emission and investigate the quality of dielectric layers in semiconductor chips.

References:

♦ Moore, G.E., (1965) Electronics, 38, p. 114
♦ Bohr, M., Unveils, I., Intel's 90 nm technology: Moore's law and more Intel 2002
♦ Hirose, M., Koh, M., Mizubayashi, W., Murakami, H., Shibahara, K., Miyazaki, S., (2000) Semicond. Sci. Technol., 15, p. 485; Wu, E.Y., Stathis, J.H., Han, L.K., (2000) Semicond. Sci. Technol., 15, p. 425
♦ Yu, Y.J., Guo, Q., Zeng, X., Li, H., Liu, S.H., Zou, S.C., (2005) Semicond. Sci. Technol., 20, p. 1116
♦ Jie, B.B., Lo, K.F., Quek, E., Chu, S., Sah, C.T., (2004) Semicond. Sci. Technol., 19, p. 870
♦ Binnig, G., Quate, C.F., Gerber, C.H., (1986) Phys. Rev. Lett., 56, p. 930
♦ O'boyle, M.P., Hwang, T.T., Wickramasinghe, H.K., (1999) Appl. Phys. Lett., 74, p. 2641
♦ Waters, R., Van Zeghbroeck, B., (1998) Appl. Phys. Lett., 73, p. 3692
♦ Hassanien, A., Tokumoto, M., Kumazawa, Y., Kataura, H., Maniwa, Y., Suzuki, S., Achiba, Y., (1998) Appl. Phys. Lett., 73, p. 3839
♦ Radnoczi, G., Safran, G., Kovacs, I., Geszti, O., Biro, L., (2000) Acta Phys. Slov., 50, p. 679
♦ Jia, J.F., Inoue, K., Hasegawa, Y., Yang, W.S., Sakurai, T., (1997) J. Vac. Sci. Technol. B, 15, p. 1861
♦ Ichizli, V., Hartnagel, H.L., Mimura, H., Shimawaki, H., Yokoo, K., (2001) Appl. Phys. Lett., 79, p. 4016
♦ Van Der Weide, D.W., Neuzil, P., (1996) J. Vac. Sci. Technol. B, 14, p. 4144
♦ Porti, M., Blasco, X., Nafría, M., Aymerich, X., (2003) Nanotechnology, 14, p. 584
♦ Lauritsen, J.P., Foster, A.S., Olesen, G.H., Christensen, M.C., Kühnle, A., Helveg, S., Rostrup–Nielsen, J.R., Besenbacher, F., (2006) Nanotechnology, 17, p. 3436
♦ Sikora, A., Gotszalk, T., Szeloch, R., Combined shear force – Tunnelling microscope with interferometric tip oscillation detection for local surface investigation and oxidation (2005) Nanoscale Calibration Standards and Methods, p. 144., G. Wilkening, L. Koenders (Eds.), VCH, Berlin
♦ Sikora, A., Gotszalk, T., Szeloch, R., (2007) Microel. Eng., 84, p. 542
♦ Fowler, R.H., Nordheim, L., (1928) Proc. Roy. Soc. London, A119, p. 173

Example figure:

The graph representing the idea of combined shear force/ emission microscope.