Description of the publication:

Authors:

Iwan, A., Palewicz, M., Sikora, A., Chmielowiec, J., Hreniak, A., Paściak, G., Bilski, P.

Title:

Aliphatic–aromatic poly(azomethine)s with ester groups as thermotropic materials for opto(electronic) applications

Journal:

Synthetic Metals

Year:

2010

Vol:

160 (17–18)

Pages:

1856–1867

ISSN/ISBN:

03796779

DOI:

10.1016/j.synthmet.2010.06.029

Link:

http://yadda.icm.edu.pl/przyrbwn/element/bwmeta1.element.bwnjournal-article-appv121n260kz?q=fd29528a-2a46-4f6d-9e67-a97f83e259d3$8&qt=IN_PAGE

Keywords:

Liquid crystals; Organic devices; Photoluminescence; Polyazomethines; Smectic and nematic mesophases; Thermoluminescence; Transition temperatures

Abstract:

We have explored the opto(electronic) and liquid crystal properties of a new series of semiconducting materials based on aliphatic–aromatic poly(azomethine)s. The structures of polymers were characterized by means of FTIR, 1H, 13C NMR spectroscopy, and elemental analysis. UV–vis properties of the thin films of the polymers were investigated on the quartz substrate. The lowest optical energy gap (Eg) at 2.28 eV was found. The polymers were irradiated with a test dose of 2 Gy Co–60 gamma–rays to detect their thermoluminescence properties in the temperature range 25–200 °C. Mesomorphic behavior was investigated via differential scanning calorimetry (DSC) and polarizing optical microscopy (POM) studies. Being into consideration backbone geometry, all polymers, excepted polymer PAZ2, obtained from poly(1,4–butanediol)bis(4–aminobenzoate) and 9–(2–ethylhexyl)carbazole–3,6– dicarboxaldehyde, exhibited liquid–crystalline properties. Moreover, the electrical characterizations of bulk heterojunction (BHJ) and bilayer devices with the following architecture ITO/PEDOT/PAZ:TiO2/Al were investigated. Additionally, devices without and with TiO2 layer such as ITO/PAZ/Al and ITO/TiO2/PAZ/Al were prepared and investigation in the dark and during irradiation with light (under illumination 1000 W/m2). The sol–gel technique was applied to prepared TiO2 layers and powders. Moreover, impedance spectroscopy at different temperatures for electrical properties measurement was used. Additionally, the compounds were tested using various AFM techniques such as Mode and Phase Imaging and local contrast force–distance curve measurement and roughness (Ra, Rms) along with skew and kurtosis are presented.

References:

♦ Jaffe, M., (1991) J. Stat. Phys., 62, p. 985
♦ Economy, J., Goranov, K., (1994) Adv. Polym. Sci., 117, p. 221
♦ Yang, S.–H., Hsu, C.–S., (2009) J. Polym. Sci. Part A: Polym. Chem., 47, p. 2713
♦ Yoshizawa, A., (2008) J. Mater. Chem., 18, p. 2877
♦ Vera, F., Serrano, J.L., Sierra, T., (2009) Chem. Soc. Rev., 38, p. 781
♦ Kato, T., Mizoshita, N., Kishimoto, K., (2006) Angew. Chem. Int. Ed., 45, p. 38
♦ Tschierske, C., (1998) J. Mater. Chem., 8, p. 1485
♦ Goodby, J.W., Mehl, G.H., Saez, I.M., Tulffin, R.P., MacKenzie, G., Auzely–Velty, R., Benvegnu, T., Plusquellec, D., (1998) Chem. Commun., p. 2057
♦ Donnio, B., Buathong, S., Bury, I., Guillon, D., (2007) Chem. Soc. Rev., 36, p. 1495
♦ Imrie, C.T., Henderson, P.A., (2007) Chem. Soc. Rev., 36, p. 2096
♦ Iwan, A., Sek, D., (2008) Prog. Polym. Sci., 33, p. 289
♦ Adell, J.M., Alonso, M.P., Barbera, J., Oriol, L., Pinol, M., Serrano, J.L., (2003) Polymer, 44, p. 7829
♦ Pucci, D., Bellusci, A., Crispini, A., Ghedini, M., La Deda, M., (2004) Inorg. Chim. Acta, 357, p. 495
♦ Kannan, P., Raja, S., Sakthivel, P., (2004) Polymer, 45, p. 7895
♦ Aly, K.I., Khalaf, A.A., Alkskas, I.A., (2003) Eur. Polym. J., 39, p. 1035
♦ Sauer, B.B., Kampert, W.G., McLean, R.S., (2003) Polymer, 44, p. 2721
♦ Choi, E.J., Ahn, J.C., Chien, L.C., Lee, C.K., Zin, W.C., Kim, D.C., (2004) Macromolecules, 37, p. 71
♦ Choi, E.J., Ahn, J.C., Lee, C.K., Jin, J.I., (2000) Polymer, 41, p. 7617
♦ Ribera, D., Mantecon, A., Serra, A., (2003) Macromol. Symp., 199, p. 267
♦ Srinivasan, K.S.V., Padmavathy, T., (2003) Macromol. Symp., 199, p. 277
♦ Cano, M., Oriol, L., Pinol, M., Serrano, J.L., (1999) Chem. Mater., 11, p. 94
♦ Sasaki, T., Fukunaga, G., (2005) Chem. Mater., 17, p. 3433
♦ Donnio, B., Barbera, J., Gimenez, R., Guillon, D., Marcos, M., Serrano, J.L., (2002) Macromolecules, 35, p. 370
♦ Barbera, J., Marcos, M., Serrano, J.L., (1999) Chem. Eur. J., 5, p. 1834
♦ Barbera, J., Marcos, M., Omenat, A., Serrano, J.L., Martinez, J.I., Alonso, P.J., (2000) Liq. Cryst., 27, p. 255
♦ Marcos, M., Gimenez, R., Serrano, J.L., Donnio, B., Heinrich, B., Guillon, D., (2001) Chem. Eur. J., 7, p. 1006
♦ Cozan, V., Gaspar, M., Butuc, E., Stoleriu, A., (2001) Eur. Polym. J., 37, p. 1
♦ Henderson, P.A., Imrie, C.T., (2005) Macromolecules, 38, p. 3307
♦ Hioki, H., Fukutaka, M., Takahashi, H., Kubo, M., Matsushita, K., Kodama, M., (2005) Tetrahedron, 61, p. 10643
♦ Narasimhaswamy, T., Somanathan, N., Lee, D.K., Ramamoorthy, A., (2005) Chem. Mater., 17, p. 2013
♦ Smith, J.A., Distasio, R.A., Hannah, N.A., Winter, R.W., Weakley, T.J.R., Gard, G.L., (2004) J. Phys. Chem. B, 108, p. 19940
♦ Paschke, R., Liebsch, S., Tschierske, C., Oakley, M.A., Sinn, E., (2003) Inorg. Chem., 42, p. 8230
♦ Sudhakar, S., Narasimhaswamy, T., Srinivasan, K.S.V., (2000) Liq. Cryst., 27, p. 1525
♦ Hindson, J.C., Ulgut, B., Friend, R.H., Greenham, N.C., Norder, B., Kotlewski, A., Dingemans, T.J., (2010) J. Mater. Chem., 20, p. 937
♦ Bagheri, M., Entezami, A., Ghanadzadeh, A., (2001) J. Mol. Liq., 94, p. 249
♦ Hernandez, S.A., Yang, Y.–H., Zhou, Q.–F., Garay, R.O., (2000) Polym. Biul., 45, p. 31
♦ Shirakawa, H., (2001) Angew. Chem. Int. Ed., 40, p. 2574
♦ MacDiarmid, A.G., (2001) Angew. Chem. Int. Ed., 40, p. 2581
♦ Heeger, A.J., (2001) Angew. Chem. Int. Ed., 40, p. 2591
♦ Ng, S.C., Chan, H.S.O., Wong, P.M.L., Tan, K.L., Tan, B.T.G., (1998) Polymer, 39, p. 4963
♦ El–Shekeil, A.G., Al–Saady, H.A., Al–Yusufy, F.A., (1998) New Polym. Mater., 5, p. 131
♦ El–Shekeil, A.G., Khalid, M.A., Al–Yusufy, F.A., (2001) Macromol. Chem. Phys., 202, p. 2971
♦ Bhatt, V.D., Ray, A., (2001) Intern. J. Polym. Mater., 49, p. 355
♦ Sharma, G.D., Sandogaker, S.G., Roy, M.S., (1996) Thin Solid Films, 278, p. 129
♦ Yakuphanoglu, F., Bilgin–Eran, B., Ocak, H., Oweimreen, G.A., (2007) Phys. B, 393, p. 270
♦ Iwan, A., Bilski, P., Janeczek, H., Jarząbek, B., Rannou, P., Sikora, A., Pociecha, D., Kaczmarczyk, B., (2010) J. Mol. Struct., 963, p. 175
♦ Yang, C.J., Jenekhe, S.A., (1995) Macromolecules, 28, p. 1180
♦ Puchalska, M., Bilski, P., (2006) Radiat. Measure., 41, p. 659
♦ Mukherjee, B., Karthik, C., Ravishankar, N., (2009) J. Phys. Chem. C, 113, p. 18204
♦ Nolan, T.N., Seery, M.K., Pillai, S.C., (2009) J. Phys. Chem. C, 113, p. 16151
♦ Yan, W., Mahurin, S.M., Overbury, S.H., Dai, S., (2005) Chem. Mater., 17, p. 1923
♦ Hreniak, A., Nyk, M., Hreniak, D., Stręk, W., Kopiński, L., Misiewicz, J., Maruszewski, K., (2004) Mater. Sci.–Poland, 22, p. 227
♦ Rusu, G.I., Airinei, A., Rusu, M., Prepelit, P., Marin, L., Cozan, V., Rusu, I.I., (2007) Acta Mater., 55, p. 433
♦ Jarząbek, B., Weszka, J., Burian, A., Pocztowski, G., (1996) Thin Solid Films, 279, p. 204

Example figure:

3D topography view of the PAZ1 polyazomethine.