Description of the publication:


Andrzej Sikora


Utilization of various atomic force microscopy techniques in investigation of liquid crystal compounds


Transworld Research Network















Recent development of various materials is stimulated by utilization of advanced measurement tools and methods. In particular, the use of the submicron diagnostic techniques is desired, when the impact of the production process on the molecular structure of the material has to be determined in order to optimize the manufacturing technology. One of the most popular measurement techniques which delivers the information about various properties of the surface with nanometer resolution is Atomic Force Microscopy (AFM). This technique, basing on local scanning tip and sample interaction is commonly used in imaging of the topography of the surface as well as its mechanical, electrical, thermal and optical properties. Investigation of the properties of the liquid crystal compounds, which can be applied in wide area of the applications, requires utilization of various measurement techniques in order to obtain desired information. Also the data processing and interpretation is essential task, therefore advanced software must be used in order to extract certain information. The topography image can be a source of the information about the roughness, size of particular features as grains or pores and the height of the deposited layer. Observation of the topography change after the exposure the surface to certain force allows to observe the wear phenomena. Mechanical properties of the surface as the stiffness and adhesion can be mapped and used for estimation of the homogeneity of the different compounds dispersion. Such kind of the analysis is essential, where certain behavior of the material is desired. As the liquid crystals are often utilized in applications where the electrical properties must be known, it is possible to verify submicron distribution of the surface potential of thin layer.


♦ Binnig G., Quate C.F., Gerber C., 1986, Phys. Rev. Lett. 56, 930.
♦ Binnig G., Gerber C., Stoll E., Albrecht T.R., Quate C.F., 1987, Europhys. Lett., 3, 1281.
♦ Wolter O., Bayer T., Greschner J., 1991, J. Vac. Sci. Technol. B 9(2), 1353.
♦ Ohnesorge F., Binnig G., 1993, Science 260, 1451.
♦ Zhong Q., Inniss D., Kjoller K., Elings V., 1993, Surf. Sci. Lett. 290, 688
♦ Hansma P. K., Cleveland J. P., Radmacher M., Walters D. A., Hillner P. E., Bezanilla M., Fritz M., Vie D., Hansma H. G., Prater C. B., Massie J., Fukunaga L., Gurley J., Elings V., 1994, Appl. Phys. Lett. 64(13), 1738.
♦ Marti Y., Williams C.C., Wickramasinghe H.K., 1987, J. Appl. Phys. 61(10), 4723.
♦ Sarid D., Elings V., 1991, J. Vac. Sci. Technol. B 9, 431.
♦ Mate C.M., McClelland G.M., Erlandsson R., Chiang S., 1987, Phys. Rev. Lett. 59, 1942.
♦ Marti O., Colchero J., Mlynek J., 1990, Nanotechnology 1, 141.
♦ Maivald P., Butt H.J., Gould S.A.C., Prater C.B., Drake B., Gurley J.A., Elings V.B., Hansma P.K., 1991, Nanotechnology 2, 103.
♦ Radmacher M., Tillman R.W., Fritz M., Gaub H.E., 1992, Science 257, 1900.
♦ Magonov S.N., Elings V.B., Whangbo M.H., 1997, Surf. Sci. 375, 385.
♦ Pickering J.P., Vancso G.J., 1998, Polym. Bull. 40, 549.
♦ Garcia R., San Palo A., 1999, Physical Review B 60, 4961
♦ San Palo A., Garcia R., 2001, Physical Review B 64, 193411
♦ Anczykowski B., Krüger D., Babcock K.L., Fuchs H., 1996, Ultramicroscopy 66, 251.
♦ Lantz M.A., Hug H.J., Hoffmann R.,. van Schendel P.J.A, Kappenberger P., Martin S., Baratoff A., Güntherodt H.-J., 2001, Science 291, 2580.
♦ Nonnenmacher M., O'Boyle M. P., Wickramasighe H. W., 1991, Appl. Phys. Lett. 58 (25), 2921.
♦ Jacobs H. O., Knapp H. F., Muller S., Stemmer A., 1997, Ultramicroscopy 69, 239, 39
♦ Marti O., Drake B., Hansma P.K., 1987, Appl. Phys. Lett. 51, 484.
♦ Binggeli M., Christoph R., Hintermann H.E., Colchero J., Marti O., 1993, Nanotechnology 4, 59
♦ Giessibl F.J., Gerber C., Binnig G., 1991, J. Vac. Sci. Technol. B 9, 984.
♦ Wildoer J.W.G., Harmans C.J.P.M., van Kempen H. 1997, Phys. Rev. B 55, R16013.
♦ Kirk M.D., Albrecht T., Quate C.F., 1988, Rev. Sci. Instrum. 59, 833.
♦ Albrecht T.R., Grutter P., Rugar D., Smith D.P.E., 1992, Ultramicroscopy 42-44, 1638.
♦ Hug H.J., Moser A., Jung T., Fritz O., Wadas A., Parashikor I., Güntherodt H.J., 1993, Rev. Sci. Instrum. 64, 2920.
♦ Basire C., Ivanov D.A., 2000. Phys. Rev. Lett. 85, 5587.
♦ Albrecht T.R., Akamine S., Carver T.E., Quate C.F., 1990, J. Vac. Sci. Technol. A 8, 3386.
♦ Bhushan B., 2007 Handbook of Nanotechnology, 2nd edn. Berlin Springer-Verlag.
♦ Binnig G., Rohrer H., Gerber C., Weibel E., 1982, Phys. Rev. Lett. 49, 57.
♦ Vincent O. R., Folorunso O., 2009, Proceedings of Informing Science & IT Education Conference (InSITE) 2009, 97.
♦ SPIP online manual
♦ Dai G., Pohlenz, F., Dziomba T., Xu M., Diener A., Koenders L., Danzebrink H.- U., 2007, Meas. Sci. Technol. 18, 415.
♦ Korpelainen, V., Lassila, A., 2007, Meas. Sci. Technol. 18, 395.
♦ Iwan A., Sêk D., Pociecha D., Sikora A., Palewicz M., Janeczek, H., 2010, Journal of Molecular Structure 981, 120.
♦ Iwan A., Palewicz M., Sikora A., Chmielowiec J., Hreniak A., Pa¶ciak G., Bilski P., 2010, Synthetic Metals 160, 1856.
♦ SPIP online manual
♦ Cleveland J.P., Manne S., Bocek D., Hansma P.K., 1993, Rev. Sci. Instrum. 64, 403.
♦ Williams P. M., Shakesheff K. M., Davies M. C., Jackson D. E., Roberts C. J.,Tendler S. J. B., 1996, J. Vac. Sci. Technol. B 14(2) 1557.
♦ Villarrubia J. S., 1996, J. Vac. Sci. Technol. B 14(2) 1518.
♦ Sahin O., 2008, Physical Review B 77, 115405.
♦ Sahin O., Erina N., 2008, Nanotechnology 19, 445717.
♦ Sikora A., Bednarz L., Central European Journal of Physics, 9(2), 2011, 372.
♦ Stern J. E., Terris B. D., Mamin H. J., Rugar D., 1988, Appl. Phys. Lett. 53, 2717.
♦ Terris B. D., Stern J. E., Rugar D., Mamin H. J., 1990, Vac. J. Sci. Technol. A8, 374.
♦ Thimm J., Mechler A., Lin H., Rhee S.K., Lal R., 2005, J. Biol. Chem. 280, 10646.
♦ Matsuki N., Ishihara R., Beenakker K., 2009, Journal of the Society for Information Display 17(3), 293.
♦ Iwan A., Bilski P., Janeczek H., Jarz±bek B., Domañski M., Rannou P., Sikora A., Pociecha D., Kaczmarczyk B, 2010, Journal of Molecular Structure 963, 175.

Example figure:

Combined 3D topography and friction image of the A1:PC61BM sample.