Description of the publication:

Authors:

Chuchmała, A., Palewicz, M., Sikora, A., Iwan, A.

Title:

Influence of graphene oxide interlayer on PCE value of polymer solar cells

Journal:

Synthetic Metals

Year:

2013

Vol:

169 (1)

Pages:

33–40

ISSN/ISBN:

03796779

DOI:

10.1016/j.synthmet.2013.03.006

Link:

http://www.sciencedirect.com/science/article/pii/S037967791300115/

Keywords:

Graphene; Graphene oxide; Organic solar cells; Polymeric photovoltaics

Abstract:

The main goal of the paper was investigation of influence of graphene oxide (GO) interlayer position on power conversion efficiency (PCE) of polymer solar cells. Graphene oxide was prepared by modified Hummers method and characterized by Raman spectroscopy and atomic force microscopy (AFM). The photovoltaic properties of devices based on poly(3–hexylthiophene–2,5–diyl) (P3HT) and [6,6]–phenyl–C61–butyric acid methyl ester (PCBM) such ITO/PEDOT:PSS/P3HT:PCBM (1:1, w/w)/GO/Al, ITO/GO/P3HT:PCBM (1:1, w/w)/PEDOT:PSS/Al and ITO/GO/P3HT:PCBM (1:1, w/w)/GO/Al were investigated. As reference device ITO/PEDOT:PSS/P3HT:PCBM (1:1, w/w)/Al was applied. Photovoltaic devices were investigated under an illumination of 100 mW/cm2 (AM1.5G) and in dark. For the constructed devices impedance spectroscopy characteristics were analyzed. Among investigated devices with GO interlayer the best value of power conversion efficiency (PCE = 0.47%) was found for the device ITO\PEDOT:PSS\P3HT:PCBM\GO\Al. The devices comprising PEDOT:PSS with P3HT:PCBM and lack of GO layer showed the best photovoltaic parameters such as a Voc of 0.47 V, Jsc of 7.86 mA/cm2, FF of 0.37, and PCE of 1.38%.

References:

♦ Sun, S., Sariciftci, N.S., (2005) Organic Photovoltaics: Mechanisms, Materials and Devices, , CRC Press New York
♦ Blom, P.W.M., Mihailetchi, V.D., Koster, L.J., Markov, D.E., (2007) Advanced Materials, 19, pp. 1551–1566
♦ Pagliaro, M., Palmisano, G., Ciriminna, R., (2008) Flexible Solar Cells, , Wiley–VCH Verlag GmbH & Co. KgaA Weinheim
♦ Poortmanas, J., Arkhipov, V., (2006) Thin Film Solar Cells: Fabrication, Characterization and Applications, , John Wiley & Sons, Ltd. England
♦ Gunes, S., Neugebauer, H., Sariciftci, N.S., (2007) Chemical Reviews, 107, pp. 1324–1338
♦ Hadipour, A., De Boer, B., Blom, P.W.M., (2008) Advanced Functional Materials, 18, pp. 169–181
♦ Cravino, A., (2007) Polymer International, 56, pp. 943–956
♦ Bundgaard, E., Krebs, F.C., (2007) Solar Energy Materials and Solar Cells, 91, pp. 954–985
♦ Thompson, B.C., Frechet, M.J., (2008) Angewandte Chemie International Edition, 47, pp. 58–77
♦ Blouin, N., Leclerc, M., (2008) Accounts of Chemical Research, 41, pp. 1110–1119
♦ Palewicz, M., Iwan, A., (2011) Current Physical Chemistry, 1, pp. 27–54
♦ Dennler, G., Scharber, M.C., Brabec, C.J., (2009) Advanced Materials, 21, pp. 1323–1338
♦ Park, S.H., Roy, A., Beaupré, S., Cho, S., Coates, N., Moon, J.S., Moses, D., Heeger, A.J., (2009) Nature Photonics, 3, pp. 297–302; Liu, F., Nunzi, J.M., (2011) Applied Physics Letters, 99, pp. 0633011–0633013
♦ Chen, F.C., Chien, S.C., (2009) Journal of Materials Chemistry, 19, pp. 6865–6869
♦ Bedeloglu, A., Demir, A., Bozkurt, Y., Sariciftci, N.S., (2009) Synthetic Metals, 159, pp. 2043–2048
♦ Galagan, Y., Rubingh, J.E.J.M., Andriessen, R., Fan, C.C., Blom, P.W.M., Veenstra, S.C., Kroon, J.M., (2011) Solar Energy Materials and Solar Cells, 95, pp. 1339–1343
♦ Iwan, A., Chuchmała, A., (2012) Progress in Polymer Science, 37, pp. 1805–1828
♦ Wang, J., Wang, Y., He, D., Liu, Z., Wu, H., Wang, H., Zhou, P., Fu, M., (2012) Solar Energy Materials and Solar Cells, 96, pp. 58–65
♦ Lee, Y.Y., Tu, K.H., Yu, C.C., Li, S.S., Hwang, J.Y., Lin, C.C., Chen, K.H., Chen, C.W., (2011) ACS Nano, 5, pp. 6564–6570
♦ Liu, Z., Li, J., Sun, Z.H., Tai, G., Lau, S.P., Yan, F., (2012) ACS Nano, 6, pp. 810–818
♦ Li, S.S., Tu, K.H., Lin, C.C., Chen, C.W., Chowalla, M., (2010) ACS Nano, 4, pp. 3169–3174
♦ Ryu, M.S., Jang, J., (2011) Solar Energy Materials and Solar Cells, 95, pp. 2893–2896
♦ Yun, J.M., Yeo, J.S., Kim, J., Jeong, H.G., Kim, D.Y., Noh, Y.J., Kim, S.S., Na, S.I., (2011) Advanced Materials, 23, pp. 4923–4928
♦ Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Tour, J.M., (2010) ACS Nano, 4, pp. 4806–4814
♦ http://www.imagemet.com/WebHelp6/Content/RoughnessParameters/ Roughness_Parameters.htm
♦ Schab–Balcerzak, E., Iwan, A., Krompiec, M., Siwy, M., Tapa, D., Sikora, A., Palewicz, M., (2010) Synthetic Metals, 160 (19–20), pp. 2208–2218
♦ Iwan, A., Pociecha, D., Sikora, A., Janeczek, H., Węgrzyn, M., (2010) Liquid Crystals, 37 (12), pp. 1479–1492
♦ Sikora, A., Iwan, A., (2012) High Performance Polymers, 24 (3), pp. 218–228
♦ Sikora, A., Kędzia, A., (2012) Advances in Clinical and Experimental Medicine, 21 (4), pp. 487–493
♦ Sikora, A., Woszczyna, M., Friedemann, M., Kalbac, M., Ahlers, F.–J., (2012) Micron, 43, pp. 479–486
♦ Pandey, D., Reifenberger, R., Piner, R., (2008) Surface Science, 602, pp. 1607–1613
♦ Nemesincze, P., Osvath, Z., Kamaras, K., Biro, L.P., (2008) Carbon, 46 (11), pp. 1435–1442
♦ Iwan, A., Palewicz, M., Ozimek, M., Chuchmala, A., Paściak, G., (2012) Organic Electronics, 13, pp. 2525–2531
♦ Iwan, A., Palewicz, M., Krompiec, M., Grucela–Zając, M., Schab–Balcerzak, E., Sikora, A., (2012) Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97, pp. 546–555

Example figure:

3D topography view of the graphene oxide sample.