Description of the publication:


Andrzej Sikora, £ukasz Bednarz


Mapping of the surface's mechanical properties due to analysis of torsional cantilever bending in dynamic force microcopy















atomic force microscopy, torsional oscillations, time–resolved intermittent contact mode, mechanical properties mapping


In atomic force microscopy, the cantilever probes provide detection of the tip–sample forces. They are therefore used for the surface's topography imaging as well as the mechanical properties mapping at nanoscale. As in most techniques developed for local stiffness imaging based on the so called contact mode, the force applied to the surface may exceed a certain level causing damage to the sample. On the other hand, the most popular measurement technique based on the intermittent contact mode, where dynamic tip–sample interactions are measured and processed in order to provide surface's shape tracking as well as imaging of energy dissipation, allows to perform the measurements with much less force and can be applied to a wide range of samples. This method, however, is insufficient in many cases, as it cannot provide detailed information about certain mechanical properties of the surface. Therefore, a new approach has been lately developed and successfully utilized in a number of applications. By the analysis of higher harmonics of the cantilever's oscillation, one can obtain more specific information about the tip–sample interaction than in the case of phase imaging based on the intermittent contact mode. Moreover, the time–resolved intermittent contact mode, where advanced high–bandwidth signal processing is implemented, allows performing fast imaging of the stiffness, adhesion, peak force and energy dissipation. As this technique provides gentle interaction with the surface, it can be even used in imaging of fragile objects, such as biological samples. Due to the mechanical properties of the cantilever causing significant deformations of the detected signal, the torsional bending of the cantilever is utilized in order to obtain the desired signal. In this chapter we discuss the principles of the implementation of this method and its application issues.


♦ Binnig G., Quate C.F., Gerber C.H., Atomic Force Microscope, (1986) Physical Reviev Letters 56 (9), 930–933
♦ Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscope-force mapping and profiling on a sub 100–A scale. J. Appl. Phys. 61(10):4723–4729
♦ Giessibl F.J., (2005) AFM's path to atomic resolution, Materials Today, 8(5), 32–41
♦ Morita S. (Ed.) (2006) Roadmap of Scanning Probe Microscopy. Springer, Berlin
♦ Bhushan B. (Ed.) (2010) Springer Handbook of Nanotechnology. Springer–Verlag Berlin Heidelberg
♦ Maivald P, Butt HJ, Gould SAC, Prater CB, Drake B, Gurley JA, Elings VB, Hansma PK (1991) Using Force Modulation to Image Surface Elasticities with the Atomic Force Microscope, Nanotechnology 2:103
♦ Heinz W.F., Hoh J.H., (1999) Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope, Trends in Biotechnology 17(4), 143–150
♦ Reynaud C., Sommer F., Quet C., El Bounia N., Duc T.M., (2000) Quantitative determination of Young's modulus on a biphase polymer system using atomic force microscopy, Surf. Interface Anal. 30, 185-189
♦ de Pablo, P. J.; Colchero, J.; Gomez–Herrero, J.; Baro, A. M., (1998) Jumping mode scanning force microscopy, Applied Physics Letters, 73 (22), 3300 - 3302
♦ F. Moreno–Herrero, J. Colchero, J. Gómez–Herrero, A. M. Baró, J. Ávila, (2004) Jumping mode atomic force microscopy obtains reproducible images of Alzheimer paired helical filaments in liquids, European Polymer Journal, 40(5), 927–932
♦ A Gigler, C Gnahm, O Marti, T Schimmel, S Walheim, Towards quantitative materials characterization with Digital Pulsed Force Mode imaging, Journal of Physics: Conference Series 61 (2007) 346-351
♦ Rosa–Zeiser A., Weilandt E., Hild S., Marti O., (1997) The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning force microscopy: pulsed–force mode operation, Meas. Sci. Technol. 8, 1333-1338
♦ Grandbois M, Clausen–Schaumann H, Gaub HE (1998) Atomic Force Microscope Imaging of Phospholipid Bilayer Degradation by Phospholipase A2. Biophys. J. 74:2398–2404
♦ C, Huang L, Kjoller K, Babcock K (2003) Studies of tip wear processes in tapping mode™ atomic force microscopy. Ultramicroscopy 97(1–4):135–144
♦ Khurshudov AG, Kato K, Koide H (1997) Wear of the AFM diamond tip sliding against silicon. Wear 203(204):22–27
♦ Anczykowski B, Krueger D, Fuchs H (1996) Cantilever dynamics in quasinoncontact force microscopy: Spectroscopic aspects. Physical Review B 53
♦ Garcia R, Perez R (2002) Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47:197–301
♦ Rabe U, Janser K (1996) Vibrations of free and surface–coupled atomic force microscope cantilevers: Theory and experiment. Rev. Sci. Instrum. 67:3281–3293
♦ Garcia R, San Palo A (1999) Attractive and repulsive tip–sample interaction regimes in tapping–mode atomic force microscopy. Physical Review B 60:4961–4967
♦ de Pablo PJ, Colchero J, Luna M, Gomez–Herrero J, Baro AM (2000) Tip–sample interaction in tapping–mode scanning force microscopy. Physical Review B 61(20):14179–14183
♦ Anczykowski B, Gotsmann B, Fuchs H, Cleveland JP, Elings VB (1999) How to measure energy dissipation in dynamic mode atomic force microscopy. Appl. Surf. Sci. 140:376-382
♦ San Palo A, Garcia R (2001) Tip–surface forces, amplitude and energy dissipation in amplitude modulation (tapping mode) force microscopy. Physical Review B 64:193411
♦ Melchera J., Carrascob C., Xua X., Carrascosad J.L., Gómez–Herrerob J., de Pablob P.J., Ramana A., (2009) Origins of phase contrast in the atomic force microscope in liquids, PNAS 106(33), 13655-13660
♦ Stark R.W., (2010) Bistability, higher harmonics, and chaos in AFM. Mater Today 13:24–32
♦ Sikora A., Bednarz L (2011) Mapping of mechanical properties of the surface by utilization of torsional oscillation of the cantilever in atomic force microscopy. Central European Journal of Physics 9 (2), 372–379
♦ Derjaguin B.V., Muller V.M., Toporov Y.U.P.,(1975) Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314-326
♦ Landau L.D., Lifshitz E.M., (1986) Theory of Elasticity, Pergamon, New York
♦ Zitzler L., Herminghaus S., Mugele F., (2002) Capillary forces in tapping mode atomic force microscopy, Phys. Rev. B 66, 155436
♦ Sahin O, Su C, Magonov S, Quate CF , Solgaard O (2007) An atomic force microscope tip designed to measure time varying nanomechanical forces, Nature Nanotechnology 2:507–514
♦ Sahin O, Quate CF, Solgaard O, Atalar A (2004) Resonant harmonic response in tapping–mode atomic force microscopy. Phys. Rev. B 69:165416
♦ Sahin O, (2008) Time–varying tip–sample force measurements and steady–state dynamics in tapping–mode atomic force microscopy, Phys. Rev. B 77, 115405
♦ Sahin O. (2005) Harmonic Force Microscope: A new tool for biomolecular identification and characterization based on nanomechanical measurements, Ph.D. dissertation, Stanford University 2005
♦ Sahin O., Atalar A., Quate C.F., Solgaard O., (2005) Harmonic cantilevers and imaging methods for atomic force microscopy, US Patent No. US6935167
♦ Sahin O., Quate C.F., Solgaard O., (2006) Torsional harmonic cantilevers for detection of high frequency force components in atomic force microscopy, US Patent No. US7089787
♦ Sahin O., Quate C.F., Solgaard O., (2008) Atomic force microscope using a torsional harmonic cantilever, US Patent No. US7404314
♦ Sarioglu AF, Solgaard O (2008) Cantilevers with integrated sensor for time–resolved force measurement in tapping–mode atomic force microscopy. Appl Phys Lett 93:023114
♦ Bhushan, Bharat (Ed.), (2011) Scanning Probe Microscopy in Nanoscience and Nanotechnology 2, Springer, Berlin
♦ Meyer G., Amer N. M., (1990) Simultaneous measurement of lateral and normal forces with an optical–beam–deflection atomic force microscope, Appl. Phys. Lett. 57, 2089
♦ Stark M, Stark RW, Heckl WM, Guckenberger R (2002) Inverting dynamic force microscopy: From signals to time–resolved interaction forces. P Natl Acad Sci USA 99:8473–8478
♦ Legleiter J, Park M, Cusick B, Kowalewski T (2006) Scanning probe acceleration microscopy (SPAM) in fluids: Mapping mechanical properties of surfaces at the nanoscale. P Natl Acad Sci USA 103:4813–4818
♦ E. Evans, K. Ritchie, (1997) Strength of a weak bond connecting flexible polymer chains, Biophys. J. 72, 1541
♦ G.I. Bell, (1978) Models for the specific adhesion of cells to cells Science 200, 618
♦ Ptak A., Kappl M., Butt H.–J. (2006), Modified atomic force microscope for high–rate dynamic force spectroscopy, Appl. Phys. Lett. 88: 263109–263111
♦ HarmoniX User Guide, doc. no 004–1024–000, 2008, Veeco Instruments Inc. Santa Barbara USA
♦ Solares S. D., Holscher H. (2010) Numerical analysis of dynamic force spectroscopy using a dual–oscillator sensor. J Vac Sci Technol B 28:3305338
♦ Solares S. D., Holscher H. (2010) Numerical analysis of dynamic force spectroscopy using the torsional harmonic cantilever. Nanotechnology 21:075702
♦ Legleiter J (2009) The effect of drive frequency and set point amplitude on tapping forces in atomic force microscopy: simulation and experiment. Nanotechnology 20:245703
♦ Mullin N., Vasilev C., Tucker J.D., Hunter C.N., Weber C.H.M., Hobbs J.K., (2009) "Torsional tapping" atomic force microscopy using T–shaped cantilevers, Appl. Phys. Lett. 94, 173109
♦ O. Sahin, (2007) Harnessing bifurcations in tapping–mode atomic force microscopy to calibrate time–varying tip–sample force measurements, Rev. Sci. Instrum. 78 103707–1-1103707–4
♦ Villarrubia J. S., (1996) Scanned probe microscope tip characterization without calibrated tip characterizers, J. Vac. Sci. Technol. B 14(2) 1518
♦ Williams P. M., Shakesheff K. M., Davies M. C., Jackson D. E., Roberts C. J. and Tendler S. J. B. (1996) Blind reconstruction of scanning probe image data, J. Vac. Sci. Technol. B 14(2) 1557
♦ Ihalainen P, Järnström J., Määttänen A., Peltonen J., (2011) Nano–scale mapping of mechanical and chemical surface properties of pigment coated surfaces by torsional harmonic atomic force microscopy, Colloids and Surfaces A: Physicochem. Eng. Aspects 373, 138-144
♦ Lanniel M., Lu B., Chen Y., Allen S., Buttery S., Williams P., Huq E., Alexander M., (2011) Patterning the mechanical properties of hydrogen silsesquioxane films using electron beam irradiation for application in mechano cell guidance, Thin Solid Films 519, 2003-2010
♦ Sahin O, Erina N (2008) High resolution and large dynamic range nanomechanical mapping in tapping–mode atomic force microscopy. Nanotechnology 19:445717
♦ Stark R.W., Heckl W.M., (2003) Higher harmonics imaging in tapping–mode atomic–force microscopy, Rev. Sci. Instr. 74(12)
♦ Balantekin M, Atalar A (2005) Enhanced higher–harmonic imaging in tapping–mode atomic force microscopy. Apl. Phys. Lett. 87:243513
♦ Sahin O., Atalar A., (2001) Simulation of higher harmonics generation in tapping–mode atomic force microscopy, Appl. Phys. Lett. 79(26), 4455
♦ Hillenbrand R., Stark M., Guckenberger R., (2000) Higher–harmonics generation in tapping–mode atomic–force microscopy: Insights into the tip-sample interaction, Appl. Phys. Lett. 76(23), 3478
♦ Schön P., Dutta S., Shirazi M., Noordermeer J., Vancso G.J., (2011) Quantitative mapping of surface elastic moduli in silica–reinforced rubbers and rubber blends across the length scales by AFM, J Mater Sci 46, 3507-3516
♦ Schön, P., Bagdi, K., Molnár, K., Markus, P., Pukánszky, B., & Julius Vancso, G. (2011) Quantitative mapping of elastic moduli at the nanoscale in phase separated polyurethanes by AFM. European Polymer Journal, 47: 692–698
♦ Qu M, Deng F, Kalkhoran SM, Gouldstone A, Robisson A, Van Vliet KJ (2011) Nanoscale visualization and multiscale mechanical implications of bound rubber interphases in rubber–carbon black nanocomposites. Soft Matter 7:1066–1070
♦ Dague E, Le DT, Zanna S, Marcus P, Loubiere P, Mercier–Bonin M. (2010), Probing in vitro interactions between Lactococcus lactis and mucins using AFM, Langmuir 26(13), 11010–7
♦ Leung, K. M., Wanger, G., Guo, Q., Gorby, Y., Southam, G., Lau, W. M., et al. (2011). Bacterial nanowires: conductive as silicon, soft as polymer. Soft Matter
♦ Husale S, Persson HJ, Sahin O (2009) DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets. Nature 462:1075–U1138
♦ Parlak Z, Hadizadeh R, Balantekin M, Degertekin FL (2009) Controlling tip–sample interaction forces during a single tap for improved topography and mechanical property imaging of soft materials by AFM. Ultramicroscopy 109:1121–1125

Example figure:

Combined 3D topography and adhesion image of the PS-LDPE sample.

Used methods: