Description of the publication:


Sikora, A., Bednarz, L., Ekwiński, G., Ekwińska, M.


The determination of the spring constant of T–shaped cantilevers using calibration structures


Measurement Science and Technology




25 (4)









atomic force microscopy; force spectroscopy; force spring determination; mechanical properties imaging; time–resolved tapping mode; torsional cantilever oscillations


One of the most important diagnostic features of atomic force microscopy is the measurement of mechanical properties of the surface. Among a wide spectra of measuring techniques, the methods utilizing torsional oscillations of the cantilever provide high speed mapping of properties such as the stiffness, adhesion, snap–in force and energy dissipation. In order to perform quantitative measurements, one must determine the spring constant of the cantilever. In this paper, we present the utilization of high–accuracy normal force calibration structures, allowing the procedure to be carried out easily and quickly. Additionally, the results of tests confirming the efficiency of the method are presented.


♦ Butt, H.–J., Cappella, B., Kappl, M., Force measurements with the atomic force microscope: Technique, interpretation and applications (2005) Surf. Sci. Rep., 59, pp. 1–152., 10.1016/j.surfrep.2005.08.003 0167–5729
♦ Reynaud, C., Sommer, F., Quet, C., Bounia, N.E., Duc, T.M., El Bounia, N., Quantitative determination of young's modulus on a biphase polymer system using atomic force microscopy (2000) Surf. Interface Anal., 189, pp. 185–189., 10.1002/1096–9918(200008)30:1<185::AID–SIA862>3.0.CO;2–D
♦ Vakarelski, I.U., Toritani, A., Nakayama, M., Higashitani, K., Deformation and adhesion of elastomer microparticles evaluated by AFM (2001) Langmuir, 17, pp. 4739–4745., 10.1021/la001588q
♦ Anczykowski, B., Krueger, D., Fuchs, H., Cantilever dynamics in quasinoncontact force microscopy: Spectroscopic aspects (1996) Phys. Rev., 53, pp. 15485–15488., 10.1103/PhysRevB.53.15485
♦ San Paulo, A., Garcķa, R., Unifying theory of tapping–mode atomic force microscopy (2002) Phys. Rev., 66., 10.1103/PhysRevB.66.041406 041406
♦ Garcia, R., San Palo, A., Attractive and repulsive tip–sample interaction regimes in tapping–mode atomic force microscopy (1999) Phys. Rev., 60, pp. 4961–4967., 10.1103/PhysRevB.60.4961
♦ San Palo, A., Garcia, R., Tip–surface forces, amplitude and energy dissipation in amplitude modulation (tapping mode) force microscopy (2001) Phys. Rev., 64., 10.1103/PhysRevB.64.193411 193411
♦ De Pablo, P.J., Colchero, J., Gomez–Herrero, J., Baro, A.M., Jumping mode scanning force microscopy (1998) Appl. Phys. Lett., 73, pp. 3300–3302., 10.1063/1.122751
♦ Moreno–Herrero, F., Colchero, J., Gómez–Herrero, J., Baró, A.M., Įvila, J., Jumping mode atomic force microscopy obtains reproducible images of Alzheimer paired helical filaments in liquids (2004) Eur. Polym. J., 40, pp. 927–932., 10.1016/j.eurpolymj.2004.01.018 0014–3057
♦ Gigler, A., Gnahm, C., Marti, O., Schimmel, T., Walheim, S., Towards quantitative materials characterization with digital pulsed force mode imaging (2007) J. Phys.: Conf. Ser., 61 (1), pp. 346–351., 10.1088/1742–6596/61/1/070 1742–6596 070
♦ Rosa–Zeiser, A., Weilandt, E., Hild, S., Marti, O., The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning force microscopy: Pulsed–force mode operation (1997) Meas. Sci. Technol., 8 (11), pp. 1333–1338., 10.1088/0957–0233/8/11/020 0957–0233 020
♦ Balantekin, M., Atalar, A., Enhanced higher–harmonic imaging in tapping–mode atomic force microscopy (2005) Appl. Phys. Lett., 87., 10.1063/1.2147708 243513
♦ Sahin, O., Quate, C.F., Solgaard, O., Atalar, A., Resonant harmonic response in tapping–mode atomic force microscopy (2004) Phys. Rev., 69., 10.1103/PhysRevB.69.165416 165416
♦ Sahin, O., Su, C., Magonov, S., Quate, C.F., Solgaard, O., An atomic force microscope tip designed to measure time–varying nanomechanical forces (2007) Nature Nanotechnol., 2, pp. 507–514., 10.1038/nnano.2007.226 1748–3387
♦ Sahin, O., Erina, N., High resolution and large dynamic range nanomechanical mapping in tapping–mode atomic force microscopy (2008) Nanotechnology, 19 (44)., 10.1088/0957–4484/19/44/445717 0957–4484 445717
♦ Sikora, A., Bednarz, L., Mapping of mechanical properties of the surface by utilization of torsional oscillation of the cantilever in atomic force microscopy (2011) Central Eur. J. Phys., 9, pp. 372–379., 10.2478/s11534–010–0127–4 1895–1082
♦ Qu, M., Deng, F., Kalkhoran, S.M., Gouldstone, A., Robisson, A., Van Vliet, K.J., Nanoscale visualization and multiscale mechanical implications of bound rubber interphases in rubber–carbon black nanocomposites (2011) Soft Matter, 7, pp. 1066–1070., 10.1039/c0sm00645a 1744–683X
♦ Schön, P., Bagdi, K., Molnįr, K., Markus, P., Pukįnszky, B., Julius Vancso, G., Quantitative mapping of elastic moduli at the nanoscale in phase separated polyurethanes by AFM (2011) Eur. Polym. J., 47, pp. 692–698., 10.1016/j.eurpolymj.2010.09.029 0014–3057
♦ Husale, S., Persson, H.J., Sahin, O., DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets (2009) Nature, 462, pp. 1075–1078., 10.1038/nature08626
♦ Cronin–Golomb, M., Sahin, O., High–resolution nanomechanical analysis of suspended electrospun silk fibers with the torsional harmonic atomic force microscope (2013) Beilstein J. Nanotechnol., 4, pp. 243–248., 10.3762/bjnano.4.25
♦ Parlak, Z., Hadizadeh, R., Balantekin, M., Degertekin, F.L., Controlling tip–sample interaction forces during a single tap for improved topography and mechanical property imaging of soft materials by AFM (2009) Ultramicroscopy, 109, pp. 1121–1125., 10.1016/j.ultramic.2009.04.006 0304–3991
♦ Sikora, A., Bednarz, L., Direct measurement and control of peak tapping forces in atomic force microscopy for improved height measurements (2011) Meas. Sci. Technol., 22 (9)., 10.1088/0957–0233/22/9/094005 0957–0233 094005
♦ Lanniel, M., Lu, B., Chen, Y., Allen, S., Buttery, S., Williams, P., Huq, E., Alexander, M., Patterning the mechanical properties of hydrogen silsesquioxane films using electron beam irradiation for application in mechano cell guidance (2011) Thin Solid Films, 519, pp. 2003–2010., 10.1016/j.tsf.2010.10.054 0040–6090
♦ Sahin, O., Harnessing bifurcations in tapping–mode atomic force microscopy to calibrate time–varying tip–sample force measurements (2007) Rev. Sci. Instrum., 78., 10.1063/1.2801009 103707
♦ Sader, J.E., Chon, J.W.M., Mulvaney, P., Calibration of rectangular atomic force microscope cantilevers (1999) Rev. Sci. Instrum., 70, p. 3967., 10.1063/1.1150021
♦ Hutter, J.L., Bechhoeffer, J., Calibration of atomic–force microscope tips (1993) Rev. Sci. Instrum., 64, p. 1868., 10.1063/1.1143970 0034–6748
♦ Ohler, B., Cantilever spring constant calibration using laser doppler vibrometry (2007) Rev. Sci. Instrum., 78., 10.1063/1.2743272 063701
♦ Sikora, A., Woszczyna, M., Friedemann, M., Kalbac, M., Ahlers, F.–J., The AFM diagnostics of the graphene–based quantum hall devices (2012) Micron, 43, pp. 479–486., 10.1016/j.micron.2011.11.010
♦ Ekwińska, M., Ekwiński, G., Rymuza, Z., Calibration of normal force in atomic force microscope (2007) Recent Advantages in Mechatronics, pp. 505–510., 10.1007/978–3–540–73956–2–99,ed Jab³oński R.,Turkowski M.,Szewczyk R
♦ Ekwińska, M., Rymuza, Z., Normal force calibration method used for calibration of atomic force microscope (2009) Acta Phys. Pol., 116, pp. 78–81
♦, ref–separatorSikora, A., Bednarz, L., The implementation and the performance analysis of the multi–channel software–based lock–in amplifier for the stiffness mapping with atomic force microscope (AFM) (2012) Bull. Pol. Acad. Sci. Tech. Sci., 60, pp. 83–88., 10.2478/v10175–012–0012–y 0239–7528
♦, ref–separatorVillarrubia, J.S., Scanned probe microscope tip characterization without calibrated tip characterizers (1996) J. Vac. Sci. Technol., 14, p. 1518., 10.1116/1.589130 0734–2101
♦ Jó¼wiak, G., Henrykowski, A., Masalska, A., Gotszalk, T., Ritz, I., Steigmann, H., (2011) The Regularized Blind Tip Reconstruction Algorithm As A Scanning Probe Microscopy Tip Metrology Method
♦–3724–ps–ldpe–12m.aspx, ref–separatorRitter, M., Dziomba, T., Kranzmann, A., Koenders, L., A landmark–based 3D calibration strategy for SPM (2007) Meas. Sci. Technol., 18 (2), pp. 404–414., 10.1088/0957–0233/18/2/S12 0957–0233 S12
♦ Sikora, A., Development and utilization of the nanomarkers for precise AFM tip positioning in the investigation of the surface morphology change (2013) Opt. Appl., 43, pp. 163–171., 0078–5466
♦ Sikora, A., Improvement of the scanning area positioning repeatability using nanomarkers developed with a nanoscratching method (2014) Meas. Sci. Technol., 25
♦–check.html, ref–separatorDerjaguin, B.V., Muller, V.M., Toporov, Y.U.P., Effect of contact deformations on the adhesion of particles (1975) J. Colloid Interface Sci., 53, pp. 314–326., 10.1016/0021–9797(75)90018–1
♦ Ptak, A., Kappl, M., Butt, H.–J., Modified atomic force microscope for high–rate dynamic force spectroscopy (2006) Appl. Phys. Lett., 88., 10.1063/1.2218273 263109
♦ Ptak, A., Makowski, M., Cichomski, M., Characterization of nanoscale adhesion between a fluoroalkyl silane monolayer and a silicon AFM tip. Complex character of the interaction potential (2010) Chem. Phys. Lett., 489, pp. 54–58., 10.1016/j.cplett.2010.02.043 0009–2614
♦ Sikora, A., Bednarz, L., Mapping of the surface's mechanical properties due to analysis of torsional cantilever bending in dynamic force microcopy (2012) Scanning Probe Acoustic Techniques, pp. 315–350., ed Marinello F.,Passeri D.,Savio E

Example figure:

Proposed calibration procedures of the time resolved tapping mode AFM system based on detection of the torsional oscillations of the cantilever.

Used methods:

Contact AFM
Force Spectroscopy (force-distance curve)