Description of the publication:


Sikora, A., Bednarz, L.


Dynamic speed control in atomic force microscopy to improve imaging time and quality


Measurement Science and Technology




25 (4)









Atomic force microscopy; fast scanning; imaging quality improvement; scanning speed control


Quantitative, three–dimensional surface imaging is one of the most significant advantages of atomic force microscopy (AFM). The imaging speed, however, is its major issue, due to the limited response time of the feedback loop. We present a dynamically adjusted scanning speed feature implemented on a commercial AFM instrument. The signals available in the system are utilized for that purpose. The auxiliary module controls the scanning speed in order to provide the necessary time to restore the tip–sample distance, which may deviate due to insufficient settling time. The solution allows the measurement to be performed with a relatively fast scanning rate and the desired imaging quality. Quantitative analysis of the results shows the relation between the imaging error and the settings of the system. It is shown that the image is acquired faster and with better imaging quality than using the constant speed method. Also, the data are presented showing a reduction of the topographical crosstalk in the phase imaging feature, as an example of the utilization of this feature in advanced AFM modes.


♦ Bhushan, B., (2010) Scanning Probe Microscopy in Nanoscience and Nanotechnology, , 10.1007/978–3–642–03535–7
♦ Bhushan, B., (2011) Scanning Probe Microscopy in Nanoscience and Nanotechnology, 2., 10.1007/978–3–642–10497–8
♦ Wickramasinghe, H.K., Progress in scanning probe microscopy (2000) Acta Mater., 48, pp. 347–358., 10.1016/S1359–6454(99)00303–1 1359–6454
♦ Yacoot, A., Koenders, L., Recent developments in dimensional nanometrology using AFMs (2011) Meas. Sci. Technol., 22 (12)., 10.1088/0957–0233/22/12/122001 0957–0233 122001
♦ Morita, S., (2007) Roadmap of Scanning Probe Microscopy, , 10.1007/978–3–540–34315–8
♦ Butt, H.–J., Siedle, P., Seifert, K., Fendler, K., Seeger, T., Bamberg, E., Weisenhorn, A.L., Engel, A., Scan speed limit in atomic force microscopy (1993) J. Microsc., 169, pp. 75–84., 10.1111/j.1365–2818.1993.tb03280.x 0022–2720
♦ Eves, B.J., Green, R.G., Limitations on accurate shape determination using amplitude modulation atomic force microscopy (2012) Ultramicroscopy, 115, pp. 14–20., 10.1016/j.ultramic.2012.01.016 0304–3991
♦ Su, C., Huang, L., Kjoller, K., Babcock, K., Studies of tip wear processes in tapping mode™ atomic force microscopy (2003) Ultramicroscopy, 97, pp. 135–144., 10.1016/S0304–3991(03)00038–X 0304–3991
♦ Yacoot, A., Koenders, L., Aspects of scanning force microscope probes and their effects on dimensional measurement (2008) J. Phys. D: Appl. Phys., 41 (10)., 10.1088/0022–3727/41/10/103001 0022–3727 103001
♦ Bakucz, P., Yacoot, A., Dziomba, T., Koenders, L., Krüger–Sehm, R., Neural network approximation of tip–abrasion effects in AFM imaging (2008) Meas. Sci. Technol., 19 (6)., 10.1088/0957–0233/19/6/065101 0957–0233 065101
♦ Kowalewski, T., Legleiter, J., Imaging stability and average tip–sample force in tapping mode atomic force microscopy (2006) J. Appl. Phys., 99., 10.1063/1.2175473 064903
♦ Sikora, A., Correction of structure width measurements performed with a combined shear–force/tunneling microscope (2007) Meas. Sci. Technol., 18 (2), pp. 456–461., 10.1088/0957–0233/18/2/S18 0957–0233 S18
♦ Sugimoto, Y., Pou, P., Abe, M., Jelinek, P., Perez, R., Morita, S., Custance, O., Chemical identification of individual, surface atoms by atomic force microscopy (2007) Nature, 446, p. 05530., 10.1038/nature05530
♦ Yang, K.M.J.Y., Chang, M.F., Hsieh, D., Lin, S., Apparent topographic height variations measured by non contact atomic, force microscopy (2007) Japan. J. Appl. Phys., 46, p. 4395., 10.1143/JJAP.46.4395 0021–4922
♦ Guriyanova, S., Golovko, D.S., Bonaccurso, E., Cantilever contribution to the total electrostatic force measured with, the atomic force microscope (2010) Meas. Sci. Technol., 21 (2)., 10.1088/0957–0233/21/2/025502 0957–0233 025502
♦ Sikora, A., The influence of the electrical field on structures dimension measurement in electrostatic force microscopy mode (2009) Opt. Appl., 39, pp. 933–941., 0078–5466
♦ Nemes–Incze, P., Osvath, Z., Kamaras, K., Biro, L., Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy (2008) Carbon, 46, pp. 1435–1442., 10.1016/j.carbon.2008.06.022
♦ Manalis, S.R., Minne, S.C., Quate, C.F., Atomic force microscopy for high speed imaging using cantilevers with an integrated actuator and sensor (1996) Appl. Phys. Lett., 68, pp. 871–873., 10.1063/1.116528
♦ Yumoto, S., Ookubo, N., Fast imaging method combining cantilever and feedback signals in contact–mode atomic force microscopy (1999) Appl. Phys., 69, pp. 51–54., 10.1007/s003390050970 1432–0630 A
♦ Esch, F., Dri, C., Spessot, A., Africh, C., Cautero, G., Giuressi, D., Sergo, R., Tommasini, R., The FAST module: An add–on unit for, driving commercial scanning probe microscopes at video rate, and beyond (2011) Rev. Sci. Instrum., 82., 10.1063/1.3585984 053702
♦ Humphris, A.D.L., Hobbs, J.K., Miles, M.J., Ultrahigh–speed scanning near–field optical microscopy capable of over 100 frames per second (2003) Appl. Phys. Lett., 83, p. 6., 10.1063/1.1590737
♦–analysis/atomic–force–microscopy/ dimension–fastscan/overview.html, ref–, ref–separatorMinne, S.C., Yaralioglu, G., Manalis, S.R., Adams, J.D., Zesch, J., Atalar, A., Quate, C.F., Automated parallel high–speed atomic force microscopy (1998) Appl. Phys. Lett., 72, pp. 2340–2342., 10.1063/1.121353
♦ Sarov, Y., Parallel proximal probe arrays with vertical interconnections (2009) J. Vac. Sci. Technol., 27, pp. 3132–3138., 10.1116/1.3256662 0734–211X B
♦ Fujimoto, H., Ooshima, T., Atomic force microscope (2009) European Patent Application
♦ Ando, T., High–speed atomic force microscopy (2013) Microscopy, 62, pp. 81–93., 10.1093/jmicro/dfs093 1349–0958
♦ Ando, T., Kodera, N., Takai, E., Maruyama, D., Saito, K., Toda, A., A high–speed atomic force microscope for studying biological macromolecules (2001) Proc. Natl Acad. Sci. USA, 98, pp. 12468–12472., 10.1073/pnas.211400898 0027–8424
♦ Zhang, Y., Fang, Y., Yu, J., Dong, X., A novel atomic force microscope fast imaging approach: Variable–speed scanning (2011) Rev. Sci. Instrum., 82., 10.1063/1.3592598 056103
♦ Meshtcheryakov, A.V., Meshtcheryakov, V.V., Scan speed control for tapping mode SPM (2012) Nanoscale Res. Lett., 7, p. 121., 10.1186/1556–276X–7–121
♦ Kodera, N., Sakashita, M., Dynamic proportional–integral–differential controller for high–speed atomic force microscopy (2006) Rev. Sci. Instrum., 77., 10.1063/1.2336113 083704
♦ Agarwal, P., De, T., Salapaka, M.V., Real time of probe–loss using switching gain controller for high speed atomic force microscopy (2009) Rev. Sci. Instrum., 80., 10.1063/1.3233896 103701
♦ Poyet, B., Ducourtieux, S., Development of a metrological AFM with minimized Abbe errors (2010) CAFMET'10: 3rd Int. Metrology Conf., 2010, pp. 195–199
♦ Kim, J.–A., Kim, J.W., Kang, C.–S., Eom, T.B., Metrological atomic force microscope using a large range scanning dual stage (2010) Int. J. Precis. Eng. Manuf., 10, pp. 11–17., 10.1007/s12541–009–0087–z
♦ Dai, G., Danzebrink, H.–U., Fluegge, J., Bosse, H., Quantitative characterisation of nanoimprinted structures using metrological large range AFM and CDAFM (2012) Int. J. Nanomanuf., 8, pp. 372–391., 10.1504/IJNM.2012.051112
♦ Dziomba, T., Krebs, P., Danzebrink, H.–U., Koenders, L., Measurement of roughness by atomic force microscopes (2013) 5 VDI/VDE Fachtagung, Metrologie in der Mikro– Und Nanotechnik 2013, pp. 141–150
♦ Sikora, A., Bednarz, L., The implementation and the performance analysis of the multi–channel software–based lock–in amplifier for the stiffness mapping with atomic force microscope (AFM) (2012) Bull. Pol. Acad. Sci. Tech. Sci., 60, pp. 83–88., 10.2478/v10175–012–0012–y 0239–7528
♦ Sikora, A., Bednarz, L., Direct measurement and control of peak tapping forces in atomic force microscopy for improved height measurements (2011) Meas. Sci. Technol., 22 (9)., 10.1088/0957–0233/22/9/094005 0957–0233 094005
♦ Sikora, A., Bednarz, L., Mapping of the surface's mechanical properties due to analysis of torsional cantilever bending in dynamic force microscopy (2012) Scanning Probe Acoustic Techniques, pp. 315–350., ed Marinello F., Passeri D. and Savio E
♦, ref–separatorZhang, C., Huang, Y., Yuan, W., Zhang, J., UV aging resistance properties of PBO fiber coated with nano–ZnO hybrid sizing (2011) J. Appl. Polym. Sci., 120, pp. 2468–2476., 10.1002/app.33461
♦ Iwan, A., Palewicz, M., Krompiec, M., Grucela–Zaj±c, M., Schab–Balcerzak, E., Sikora, A., Synthesis, materials characterization and opto(electrical) properties of unsymmetrical azomethines with benzothiazole core (2012) Spectrochim. Acta, 97, pp. 546–555., 10.1016/j.saa.2012.06.054 A
♦ Villarrubia, J.S., Scanned probe microscope tip characterization without calibrated tip characterizers (1996) J. Vac. Sci. Technol., 14, p. 1518., 10.1116/1.589130 0734–211X B
♦ San Palo, A., Garcia, R., Tip–surface forces, amplitude and energy dissipation in amplitude modulation (tapping mode) force microscopy (2001) Phys. Rev., 64., 10.1103/PhysRevB.64.193411 B 193411
♦ Sikora, A., The method of minimizing the impact of local residual electrostatic charge on dimensions measurement accuracy in atomic force microscopy (AFM) measurements (2011) Meas. Sci. Technol., 22 (9)., 10.1088/0957–0233/22/9/094022 0957–0233 094022

Example figure:

The signals traces of the AFM system with disabled and enabled speed control feature.

Used methods: