Description of the publication:


Sikora, A.


Improvement of the scanning area positioning repeatability using nanomarkers developed with a nanoscratching method


Measurement Science and Technology




25 (5)









atomic force microscopy; environmental tests; material science; nanomarkers; nanopositioning; nanoscratching


A sophisticated experiment requiring multiple micrometer–scale scanning of the same area of a sample may be performed easily if special positioning features on the surface are available. A set of nanomarkers developed using a nanoscratching technique can provide an efficient, submicron–accurate solution allowing us to investigate various phenomena. In this paper, the analysis of the roughness estimation repeatability is presented in terms of defining the accuracy of the area of interest. The obtained results confirmed the possibility of the repeatable positioning of the sample in an atomic force microscope, providing area roughness determination repeatability with a standard distribution smaller than 3%. As an example, the observation of light–caused surface degradation is presented. Also, the utilization of nanomarkers in determining the magnetic domain's rearrangement angle with an accuracy better than 0.5° is shown.


♦ Environmental Testing (Part 2–5). Tests. Test Sa. Simulated Solar Radiation at Ground Level and Guidance for Solar Radiation Testing, IEC, standard IEC 60068–2–5
♦ Plastics – Methods of Exposure to Laboratory Light Sources – Part 2: Xenon–arc Lamps, , EN ISO, standard EN ISO 4892–2
♦ Environmental Testing (Part 2–38). Tests. Test Z/AD. Composite Temperature/humidity Cyclic Test, , IEC, standard IEC 60068–2–38
♦ Environmental Testing (Part 2–14). Tests. Test N. Change of Temperature, , IEC, standard IEC 60068–2–14
♦ Suresh, B., Maruthamuthu, S., Khare, A., Palanisamy, N., Muralidharan, V.S., Ragunathan, R., Kannan, M., Pandiyaraj, K.N., Influence of thermal oxidation on surface and thermo–mechanical properties of polyethylene (2011) J. Polym. Res., 18, pp. 2175–2184., 10.1007/s10965–011–9628–0 1022–9760
♦ Nowicki, M., Richter, A., Wolf, B., Kaczmarek, H., Nanoscale mechanical properties of polymers irradiated by UV (2003) Polymer, 44 (21), pp. 6599–6606
♦ Canetta, E., Montiel, K., Adya, A.K., Morphological changes in textile fibres exposed to environmental stresses: Atomic force microscopic examination (2009) Forensic Sci. Int., 191, pp. 6–14., 10.1016/j.forsciint.2009.05.022 0379–0738
♦ Robertson, C., Wertheimer, M.R., Fournier, D., Lamarre, L., Study on the morphology of XLPE power cable by means of atomic force microscopy (1996) IEEE Transactions on Dielectrics and Electrical Insulation, 3 (2), pp. 283–288
♦ Wu, J., Zhao, M., Nguyen, T., Gu, X., Effects of relative humidity and nanoparticle incorporation on nanostructures of PS–b–PEO diblock copolymer (2008) Mater. Res. Soc. Symp. Proc., 1056, pp. 227–232., 10.1557/PROC–1056–HH08–34 0272–9172
♦ Minoshima, K., Oie, Y., Komai, K., In situ AFM imaging system for the environmentally induced damage under dynamic loads in a controlled environment (2003) ISIJ Int., 43, pp. 579–588., 10.2355/isijinternational.43.579
♦ Olthoff, S., McKinnon, A.W., Welland, M.E., Thermal desorption of Na from: In situ observation of the 3 × 1 to 7 × 7 structural transformation using a high–temperature scanning tunneling microscope (1995) Surf. Sci., 326, pp. 113–123., 10.1016/0039–6028(94)00767–5 0039–6028
♦ Wapner, K., Stratmann, M., Grundmeier, G., Application of the Scanning Kelvin Probe for the study of the corrosion resistance of interfacial thin organosilane films at adhesive/metal interfaces (2005) Silicon Chemistry, 2 (5–6), pp. 235–245., DOI 10.1007/s11201–005–0935–3
♦ Sikora, A., Development and utilization of the nanomarkers for precise AFM tip positioning in the investigation of the surface morphology change (2013) Opt. Appl., 43, pp. 163–171., 10.5277/oa130120 0078–5466
♦ Proff, C., Abolhassan, S., Dadras, M.M., Lemaignan, C., In situ oxidation of zirconium binary alloys by environmental SEM and analysis by AFM, FIB, and TEM (2010) J. Nucl. Mater., 404, pp. 97–108., 10.1016/j.jnucmat.2010.05.012 0022–3115
♦ Slattery, A.D., Blanch, A.J., Quinton, J.S., Gibson, C.T., Calibration of atomic force microscope cantilevers using standard and inverted static methods assisted by FIB–milled spatial markers (2013) Nanotechnology, 24 (1)., 10.1088/0957–4484/24/1/015710 0957–4484 015710
♦ Romanus, H., Schadewald, J., Cimalla, V., Niebelschutz, M., Machleidt, T., Franke, K.–H., Spiess, L., Ambacher, O., Markers prepared by focus ion beam technique for nanopositioning procedures (2007) Microelectronic Engineering, 84 (3), pp. 524–527., DOI 10.1016/j.mee.2006.10.076, PII S0167931706005806, Nanoscale Imaging and Metrology of Devices and Innovative Materials
♦ Kregting, R., Gielen, S., Driel, W.V., Alkemade, P., Miro, H., Kamminga, J.D., Local stress analysis on semiconductor devices by combined experimental–numerical procedure (2011) Microelectron. Reliab., 51, pp. 1092–1096., 10.1016/j.microrel.2011.03.010 0026–2714
♦ Rust, M.A., Todd, R.I., High resolution surface studies of superplastic deformation (2007) Mater. Sci. Forum, 551–552, pp. 615–620., 10.4028/–552.615 0255–5476
♦ Jud, P.P., Nellen, P.M., Sennhauser, U., Micromachining by Focused Ion Beam (FIB) for materials characterization (2005) Advanced Engineering Materials, 7 (5), pp. 384–388., DOI 10.1002/adem.200500048
♦ Ritter, M., Dziomba, T., Kranzmann, A., Koenders, L., A landmark–based 3D calibration strategy for SPM (2007) Measurement Science and Technology, 18 (2), pp. 404–414., DOI 10.1088/0957–0233/18/2/S12, PII S0957023307255365, S12
♦ Farkas, N., Tokash, J.C., Zhang, G., Evans, E., Ramsier, R.D., Dagata, J., Local oxidation of metal and metal nitride films (2004) J. Vac. Sci. Technol., 22, pp. 1879–1884., 10.1116/1.1723269 0734–2101
♦ Sikora, A., Correction of structure width measurements performed with a combined shear–force/tunnelling microscope (2007) Measurement Science and Technology, 18 (2), pp. 456–461., DOI 10.1088/0957–0233/18/2/S18, PII S0957023307254839, S18
♦ Piner, R.D., Zhu, J., Xu, F., Hong, S., Mirkin, C.A., 'Dip–pen' nanolithography (1999) Science, 283 (5402), pp. 661–663., DOI 10.1126/science.283.5402.661
♦ Rakickas, T., Gavutis, M., Reichel, A., Piehler, J., Liedberg, B., Valiokas, R., Protein–protein interactions in reversibly assembled nanopatterns (2008) Nano Lett., 8, pp. 3369–3375., 10.1021/nl801892m
♦ Ramiączek–Krasowska, M., Szyszka, A., Prazmowska, J., Paszkiewicz, R., Tłaczała, M., Prazmowska, J., Tłaczała, M., Application of nanoscratching in electronic devices (2009) Opt. Appl., 39, pp. 711–716., 0078–5466
♦ Bhushan, B., Nanotribology and nanomechanics (2005) Wear, 259, pp. 1507–1531., 10.1016/j.wear.2005.01.010
♦ Ton–That, C., Shard, A.G., Bradley, R.H., Thickness of spin–cast polymer thin films determined by angle–resolved XPS and AFM tip–scratch methods (2000) Langmuir, 16 (5), pp. 2281–2284., DOI 10.1021/la990605c
♦ Gibson, C.T., Turner, I.J., Roberts, C.J., Lead, R., Quantifying the dimensions of nanoscale organic surface layers in natural waters (2007) Environ. Sci. Technol., 41, pp. 1339–1344., 10.1021/es061726j
♦ Lee, S.H., Analysis of ductile mode and brittle transition of AFM nanomachining of silicon (2012) Int. J. Mach. Tools Manuf., 61, pp. 71–79., 10.1016/j.ijmachtools.2012.05.011 0890–6955
♦ Huang, J.–C., Li, C.–L., Lee, J.–W., The study of nanoscratch and nanomachining on hard multilayer thin films using atomic force microscope (2012) Scanning, 34, pp. 51–59., 10.1002/sca.20280
♦ Vincent, O.R.F.O., A descriptive algorithm for Sobel image edge detection (2009) InSITE: Proc. Informing Science & IT Education Conf., 2009, pp. 97–107
♦ Chuchmała, A., Palewicz, M., Sikora, A., Iwan, A., Influence of graphene oxide interlayer on PCE value of polymer solar cells (2013) Synth. Met., 169, pp. 33–40., 10.1016/j.synthmet.2013.03.006 0379–6779
♦ Sikora, A., Iwan, A., AFM study of the mechanical wear phenomena of the polyazomethine with thiophene rings: Tapping mode, phase imaging mode and force spectroscopy (2012) High Perform. Polym., 24, pp. 218–228., 10.1177/0954008311436220
♦ Jang, K., Ishibashi, Y., Iwata, D., Suganuma, H., Yamada, T., Takemura, Y., Fabrication of ferromagnetic nanoconstriction using atomic force microscopy nanoscratching (2011) J. Nanosci. Nanotechnol., 11, pp. 10945–10948., 10.1166/jnn.2011.4052 1533–4880
♦ Thonggoom, R., Thamasirianunt, P., Sanguansap, K., Bulk phase separation study by atomic force microscope friction imaging of natural rubber/poly (methyl methacrylate) film (2008) Polym. Test., 27, pp. 368–377., 10.1016/j.polymertesting.2007.12.008 0142–9418
♦ Benavente, J., Vázquez, M.I., Hierrezuelo, J.R.R., López–Romero, J.M., López–Ramirez, M.R., Modification of a regenerated cellulose membrane with lipid nanoparticles and layers. Nanoparticle preparation, morphological and physicochemical characterization of nanoparticles and modified membranes (2010) J. Membr. Sci., 355, pp. 45–52., 10.1016/j.memsci.2010.03.004 0376–7388
♦ Geometrical Product Specifications (GPS) – Surface Texture: Profile Method – Terms, Definitions and Surface Texture Parameters, , ISO, standard ISO 4287
♦ Dziomba, T., Felgner, A., Krebs, P., Danzebrink, H.–U., Koenders, L., Towards more comparable and standardized atomic force microscopy roughness measurements (2013) Proc. 11th Int. Symp. of Measurement Technology and Intelligent Instruments
♦ Sahin, O., Erina, N., High resolution and large dynamic range nanomechanical mapping in tapping–mode atomic force microscopy (2008) Nanotechnology, 19 (44)., 10.1088/0957–4484/19/44/445717 0957–4484 445717
♦ Sikora, A., Bednarz, L., Mapping of mechanical properties of the surface by utilization of torsional oscillation of the cantilever in atomic force microscopy (2011) Cent. Eur. J. Phys., 9, pp. 372–379., 10.2478/s11534–010–0127–4
♦ Sikora, A., Bednarz, L., Ekwiński, G., Ekwińka, M., The determination of the spring constant of T–shaped cantilevers using calibration structures (2014) Meas. Sci. Technol., 25 (4)., 10.1088/0957–0233/25/4/044015 0957–0233 044015
♦ Ozimek, M., Sikora, A., Gaworska–Koniarek, D., Wilczyński, W., Utilization of near field microscopy for nanoscopic analysis of magnetic domain orientation (2010) Prz. Elektrotech., 4, pp. 72–74., 0033–2097
♦ Ozimek, M., Sikora, A., Wilczyński, W., Estimation of correlation of film thickness and magnetic domain structures on NiFe thin films (2013) Prz. Elektrotech., 8, pp. 208–210., 0033–209

Example figure:

3D topography view of the polycarbonate sample containing the set of the nanomarkers.

Used methods:

Magnetic Force Microscopy