Description of the publication:

Authors:

Agnieszka Hreniak, Andrzej Sikora, Agnieszka Iwan

Title:

Influence of Amount of Silver on the Structural and Optical Properties of TiO2 Powder Obtained by Sol–Gel Method

Journal:

International Journal of Materials and Chemistry

Year:

2014

Vol:

4(2)

Pages:

15–26

ISSN/ISBN:

----

DOI:

10.5923/j.ijmc.20140402.01

Link:

http://article.sapub.org/pdf/10.5923.j.ijmc.20140402.01.pdf/

Keywords:

----

Abstract:

In this paper five TiO2 powders prepared by sol–gel technique were analyzed being into consideration the modification of method of synthesis applied. As a precursors titanium (IV) buthoxide (TBOT) or titanium (IV) isopropoxide (TIPO) were used. The size of obtained pure TiO2 particles (called in paper TiO2–1 ÷ TiO2–5) was in the range 80–300 nm as it was confirmed by XRD, SEM and AFM techniques. Ag doped TiO2 (abbreviated herein as TiO2–2–Ag–y) was obtained using two methods of synthesis, where different amount of silver was added (1, 5 or 10% w/w). Additionally, the influence of method of the synthesis applied and amount of silver on the UV–vis properties of TiO2 was analyzed.

References:

♦ Ananpattarachai J., Kajitvichyanukul P., Seraphin S., Visible light absorption ability and photocatalytic oxidation activity of various interstitial N–doped TiO2 prepared from different nitrogen dopants, Journal of Hazardous Materials, 2009; 168, 253-261.
♦ Fujishima A., Hashimoto K., Watanabe T., TiO2 Photocatalysis: Fundamentals and Applications, BKC Inc., Tokyo, 1999.
♦ Zhang Y., Chen Y., Westerhoff P., Crittenden J., Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles, Water Research, 2009; 43, 4249-4257.
♦ Ganesh I., Gupta A.K., Kumar P.P., Chandra Sekhar P.S., Radha K., Padmanabham G., Sundararajan G., Preparation and characterization of Co–doped TiO2 materials for solar light induced current and photocatalytic applications, Materials Chemistry and Physics, 2012; 135, 220-234.
♦ Wang H–W., Lin H–C., Kuo C–H., Cheng Y–L., Yeh Y–C., The CMS experiment at the CERN LHC, Journal of Physics and Chemistry of Solids, 2008; 69, 633-636.
♦ Lai Y., Chen Y., Zhuang H., Lin C., The ATLAS Experiment at the CERN Large Hadron Collider, Materials Letters, 2008; 62, 3688-3690.
♦ Amin S.A., Pazouk M., Hosseinnia A., Synthesis of TiO2-Ag nanocomposite with sol-gel method and investigation of its antibacterial activity against E. coli, Powder Technology, 2009; 196, 241–245.
♦ Li X.S., Fryxell G.E., Wang C., Engelhard M.H., The synthesis of Ag–doped mesoporous TiO2, Microporous and Mesoporous Materials, 2008; 111, 639-642.
♦ Wua Q–H., Fortunellib A., Granozzi G., Preparation, characterisation and structure of Ti and Al ultrathin oxide films on metals, International Reviews in Physical Chemistry, 2009; 28, 517-576.
♦ Aysin B., Ozturk A., Park J., Silver–loaded TiO2 powders prepared through mechanical ball milling, Ceramics International, 2013; 39, 7119-7126.
♦ Shi–Jie S., Li–Ping Y., Xiao–Min L., Xiao–Ling W., Hui Y., Xiao–Dong S., Preparation and characterization of TiO2 doped and MgO stabilized Na–Al2O3 electrolyte via a citrate sol-gel method, Journal of Alloys and Compounds, 2013; 563, 176-179.
♦ Sriwong C., Wongnawa S., Patarapaiboolchai O., Photocatalytic activity of rubber sheet impregnated with TiO2 particles and its recyclability, Catalysis Communications, 2012; 24(3) 464-472.
♦ Žunič V., Vukomanović M., Škapin S.D., Suvorov D., Kovač J., Photocatalytic properties of TiO2 and TiO2/Pt: A sol–precipitation, sonochemical and hydrothermal approach, Ultrasonics Sonochemistry (Article in press), DOI: 10.1016/j.ultsonch.2013.05.018.
♦ MacÉ T., Vaslin–Reimann S., Ausset P., Maillé M., Characterization of manufactured TiO2 nanoparticles, Journal of Physics, 2013; 429, 012012 (10p).
♦ Niu J. Yao B. Chen Y., Peng C., Yu X., Zhang J., Bai G., Enhanced photocatalytic activity of nitrogen doped TiO2 photocatalysts sensitized by metallo Co, Ni–porphyrins, Applied Surface Science, 2013; 271, 39–44.
♦ Sikora A., Woszczyna M., Friedemann M., Ahlers F.J., Kalbac M., AFM diagnostics of graphene–based quantum Hall devices, Micron, 2012; 43, 479–486.
♦ Lau J.W., Shaw J.M., Magnetic nanostructures for advanced technologies: fabrication, metrology and challenges. Journal of Physics D: Applied Physics, 2011; 44, 303001 (p43).
♦ Shi L., Plyasunov S., Bachtold A., McEuen P.L., Majumdar A.: Scanning thermal microscopy of carbon nanotubes using batch–fabricated probes, Applied Physics Letters, 2000; 77, 4295 (p3).
♦ Szymoński M., Goryl M., Krok F., Kolodziej J.J., Mongeot F.B.D, Metal nanostructures assembled at semiconductor surfaces studied with high resolution scanning probes, Nanotechnology, 2007; 18, 044016 (p7).
♦ Allers W., Schwarz A., Schwarz U.D., Wiesendanger R.: A scanning force microscope with atomic resolution in ultrahigh vacuum and at low temperatures, Review of Scientific Instruments, 1998; 69, 221–225.
♦ Jaafar M., Go J., Gómez–Herrero J., Gil a, Ares P., Vázquez M., Asenjo a: Variable–field magnetic force microscopy, Ultramicroscopy, 2009; 109, 693 (p9).
♦ Sikora A., Correction of structure width measurements performed with a combined shear–force/tunneling microscope, Measurement Science and Technology, 2007; 2, 456-461.
♦ Dongmo S., Vautrot P., Bonnet N., Troyon M., Correction of surface roughness measurements in SPM imaging, Applied Physics A, 1998; 66, 819-823.
♦ Matyka K., Matyka M., Mróz I., Zalewska–Rejdak J., Ciszewski A., An AFM study on mechanical properties of native and dimethyl suberimidate cross–linked pericardium tissue, Journal of molecular recognition, 2007; 20, 524-530.
♦ Ptak A., Makowski M., Cichomski M., Characterization of nanoscale adhesion between a fluoroalkyl silane monolayer and a silicon AFM tip. Complex character of the interaction potential, Chemical Physics Letters, 2010; 489, 54-58.
♦ Sikora A., Bednarz L., Mapping of mechanical properties of the surface by utilization of torsional oscillation of the cantilever in atomic force microscopy, Central European Journal of Physics, 2011; 9, 372-379.
♦ Magonov S.N.S., Elings V., Whangbo M.–H., Phase imaging and stiffness in tapping–mode atomic force microscopy, Surface Science, 1997; 375, L385-L391.
♦ Bar G., Brandsch R., Whangbo M.–H., Description of the frequency dependence of the amplitude and phase angle of a silicon cantilever tapping on a silicon substrate by the harmonic approximation, Surface Science, 1998; 411, L802-L809.
♦ Cleveland J.P., Anczykowski B., Schmid a. E., Elings V.B., Energy dissipation in tapping–mode atomic force microscopy, Applied Physics Letters, 1998; 72, 2613-2615.
♦ Anczykowski B., Gotsmann B., Fuchs H., Cleveland J.P., Elings V.B., How to measure energy dissipation in dynamic mode atomic force microscopy, Applied Surface Science, 1999; 140, 376-382.
♦ Sikora A., The method of minimizing the impact of local residual electrostatic charge on dimensional measurement accuracy in atomic force microscopy measurements, Measurement Science and Technology, 2011; 22, 94022 (p7).
♦ Chung J., Munz M., Sturm H., Stiffness variation in the interphase of amine–cured epoxy adjacent to copper microstructures, Surface and Interface Analysis, 2007; 39, 624–633.
♦ Radmacher M., Tillmann R.W., Gaub H.E., Imaging viscoelasticity by force modulation with the atomic force microscope, Biophysical Journal, 1992; 64, 735-742.
♦ Chuchmała A., Palewicz M., Sikora A., Iwan A., Influence of graphene oxide interlayer on PCE value of polymer solar cells, Synthetic Metals, 2013; 169, 33-40.
♦ Sikora A., Iwan A., AFM study of the mechanical wear phenomena of the polyazomethine with thiophene rings: Tapping mode, phase imaging mode and force spectroscopy, High Performance Polymers, 2012; 24, 218-228.
♦ Iwan A., Schab–Balcerzak E., Siwy M., Sikora A., Palewicz M., Janeczek H., Sibinski M., New aliphatic-aromatic tetraphenylphthalic–based diimides: Thermal, optical and electrical study, Optical Materials, 2011; 33, 958-967.
♦ Vijay M., Selvarajan V., Sreekumar K.P., Jiaguo Y., Shengwei L., Ananthapadmanabhan P.V., Characterization and visible light photocatalytic properties of nanocrystalline TiO2 synthesized by reactive plasma processing, Solar Energy Materials & Solar Cells, 2009; 93, 1540-1549.
♦ Wen–Chi H., Yu–Chun C., Hsin C., Ting–Ke T., Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and their performance for photocatalytic degradation of 1,2–dichloroethane, Applied Surface Science, 2008; 255, 2205-2213.
♦ Yanqin W., Humin C., Yanzhong H., Jiming M., Weihua L., Shengmin C., Preparation, characterization and photoelectrochemical behaviors of Fe(III)–doped TiO2 nanoparticles, Journal of Materials Science, 1999; 34, 3721-3729.
♦ Yan J., Wang B., Hai–Ping C., Shi–Guo D., Low temperature preparetion and photo–absorbance property of micron sizw Cu/nano–TiO2 composite particles, Journal of Inorganic Materials, 2010; 25, 370-374.
♦ Ishibai Y., Sato J., Nishikawa T., Miyagishi S., Synthesis of visible–light active TiO2 photocatalyst with Pt–modification: Role of TiO2 substrate for high photocatalytic activity, Applied Catalysis B: Environmental, 2008; 79, 117-121.

Example figure:

TiO2-2-Ag-1 sample - the 3D topography view.