Description of the publication:

Authors:

A. Iwan, M. Malinowski, A. Sikora, I. Tazbir, G. Pasciak

Title:

Studies of bibenzimidazole and imidazole influences on electrochemical properties of polymer fuel cells

Journal:

Electrochimica Acta

Year:

2015

Vol:

164

Pages:

143–153

ISSN/ISBN:

----

DOI:

http://dx.doi.org/10.1016/j.electacta.2015.02.144

Link:

http://www.sciencedirect.com/science/article/pii/S0013468615004302

Keywords:

polymer fuel cells, imidazole, bibenzimidazole, Nafion, membrane electrode assembly

Abstract:

Binary and ternary membranes were prepared by immersion of Nafion-115 in 2,2'-bis(4-aminophenyl)-5,5'-bibenzimidazole (BAPBI) or/and in imidazole (Im) and were used in proton exchange membrane fuel cells (PEMFCs) with Pt/C gas diffusion electrodes and graphite single-serpentine monopolar plates. Membranes were activated in 0.2 M H2SO4. BAPBI was synthesized in poly(phosphoric) acid and the chemical structure was confirmed by 1H, 13C NMR and ATR-FTIR spectroscopy. Membranes were characterized by FTIR spectroscopy, TGA, AFM techniques. Also the water uptake was determined. PEMFCs were investigated by electrochemical impedance spectroscopy, polarization curves, cyclic voltammetry and linear sweep voltammetry taking into consideration the kind of imidazole applied and the temperature used (25 or 60 ºC). The maximum power density of 146 mW/cm2 at the current density of 345 mA/cm2 was detected for Nafion-115-BAPBI membrane. For all constructed PEMFCs the efficiency at 0.6 V was found about 41%. The immersion of Nafion-115 in Im, BAPBI or BAPBI-Im increased the thermal stability and mechanical properties of membranes. The Nafion-115-BAPBI membrane showed good prospective for application in PEMFCs while in opposite to Nafion-115-Im, the poisoning effect on Pt catalyst was not observed.

References:

♦ H. Zhan, P.K. Shen, Chem. Rev. 112 (2012) 2780–2832.
♦ S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Int. J. Hydr. Energ. 35 (2010) 9349-9384.
♦ A.K. Mishra, S. Bose, T. Kuila, N.H. Kim, J.H. Lee, Progr. Polym. Sci. 37 (2012) 842-869.
♦ C.H. Park, C.H. Lee, M.D. Guiver, Y.M. Lee, Progr. Polym. Sci. 36 (2011) 1443-1498.
♦ S. Zhang, Y. Shao, G. Yin, Y. Lin, J. Mater. Chem. A 1 (2013) 4631-4641.
♦ A.A. Shah, K.H. Luo, T.R. Ralph, F.C. Walsh, Electrochimica Acta 56 (2011) 3731-3757.
♦ M. Malinowski, A. Iwan, Polimery. 6 (2014) 451-458.
♦ A.K. Sahu, S. Pitchumani, P. Sridhar, A.K. Shukla, Bull. Mater. Sci. 32 (2009) 285-294.
♦ S. Bose, T. Kuila, T.X.H. Nguyen, N.H. Kim, K. Lau, J.H. Lee, Progr. Polym. Sci. 36 (2011) 813-843.
♦ J.A. Asensio, E.M. Sanchez, P. Gomez-Romero, Chem. Soc. Rev. 39 (2010) 3210-3239.
♦ Q. Li, J.O. Jensen, R.F. Savinell, N.J. Bjerrum, Progr. Polym. Sci. 34 (2009) 449-477.
♦ B.P. Tripathi, V.K. Shahi, Progr. Polym. Sci. 36 (2011) 945-979.
♦ M.B. Satterfield, P.W. Majsztrik, H. Ota, J.B. Benziger, A. Bocarsly, J. Polym. Sci.: Part B: Polym. Phys. 44 (2006) 2327-2345.
♦ C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, A.B. Bocarsly, J. Power Sources 103 (2001) 1-9.
♦ M.A. Hickner, H. Ghassemi, Y.S. Kim, B.R. Einsla, J.E. McGrath, Chem. Rev. 104 (2004) 4587-4612.
♦ D. Aili, M.K. Hansen, C. Pan, Q. Li, E. Christensen, J.O. Jensen, N.J. Bjerrum, Inter. J. Hydrog. Ener. 36 (2011) 6985-6993.
♦ D. Arunbabu, A. Sannigrahi, T. Jana, J. Phys. Chem. B. 112 (2008) 5305-5310.
♦ A. Ainla, D. Brandell, Solid State Ion. 178 (2007) 581-585.
♦ Y. Guan, H. Pu, H. Pan, et al., Polymer 51 (2010) 5473-5481.
♦ J. Yang, Q. Che, L. Zhou, R. He, R.F. Savinell, Electrochimica Acta 56 (2011) 5940-5946.
♦ L.-C. Jheng, S.L.-C. Hsu, B.-Y. Lin, Y.-I. Hsu, J. Membr. Sci. 460 (2014) 160-170.
♦ Z. Zuo, Y. Fu, A. Manthiram, Polymers 4 (2012) 1627-1644.
♦ R. Subbaraman, H. Ghassemi, T. Zawodzinski, Solid State Ionics 180 (2009) 1143-1150.
♦ R. Subbaraman, H. Ghassemi, T.A. Zawodzinski, J. Am. Chem. Soc. 129 (2007) 2238-2239.
♦ Y.-Z. Fu, A. Manthiram, J. Electrochem. Soc. 154 (2007) B8-B12.
♦ K.D. Kreuer, A. Fuchs, M. Ise, M. Spaeth, J. Maier, Electrochimica Acta 43 (1998) 1281-1288.
♦ A. Schechter, R.F. Savinell, Solid State Ionics 147 (2002) 181-187.
♦ W.-Q. Deng, V. Molinero, W.A. Goddard III, J. Am. Chem. Soc. 126 (2004) 15644-15645.
♦ T. Ueki, M. Watanabe, Macromolecules 41 (2008) 3739-3749.
♦ X. Gu, N. Xu, X. Guo, J. Fang, High Perform. Polym. 25 (2013) 508-517.
♦ M. Ekwinska, Z. Rymuza, Acta Phys. Pol. 116 (2009) 78-81.
♦ A. Sikora, L. Bednarz, G. Ekwinski, M. Ekwinska, Measurement Science and Technology 25 (2014) 044015.
♦ http://www.imagemet.com/accessed 25.09.2014.
♦ M. Malinowski, A. Iwan, K. Parafiniuk, L. Gorecki, G. Pasciak, Int. J. Hydr Ener. 40 (2015) 833-840.
♦ Z. Liang, W. Chen, J. Liu, S. Wang, Z. Zhou, W. Li, G. Sun, Q. Xin, J. Membr. Sci. 233 (2004) 39-44.
♦ A. Alentiev, J. Kostina, G. Bondarenko, Desalination 200 (2006) 32-33.
♦ A. Gruger, A. Regis, T. Schmatko, P. Colomban, Vibrational Spectroscopy 26 (2001) 215-225.
♦ A. Sannigrahi, S. Ghosh, S. Maity, T. Jana, Polymer 52 (2011) 4319-4330.
♦ Q. Li, R. He, J.O. Jensen, N.J. Bjerrum, Fuel Cells 4 (2004) 147-159.
♦ http://www.imagemet.com/WebHelp6/Default.htm#RoughnessParameters/Roughness_Parameters.htm accessed 25.09.2014.
♦ E.A. Franceschini, H.R. Corti, J. Power Sourc. 188 (2009) 379-386.
♦ E. Roberti, G. Carlotti, S. Cinelli, G. Onori, A. Donnadio, R. Narducci, M. Casciola,M. Sganappa, J. Power Sourc. 195 (2010) 7761-7764.
♦ H. Nara, T. Momma, T. Osaka, Electrochimica Acta 113 (2013) 720-729.
♦ N. Wagner, T. Kaz, K.A. Friedrich, Electrochimica Acta 53 (2008) 7475-7482.

Example figure:

3D view of the topography measured with AFM for Nafion-115-Im.

Used methods:

TapppingMode
Force Spectroscopy