Description of the publication:


K. Oganisian, A. Hreniak, A. Sikora, D. Gaworska-Koniarek, A. Iwan


Synthesis of iron doped titanium dioxide by sol-gel method for magnetic applications


Processing and Application of Ceramics




9 [1]








TiO2, Fe-doping, nanoparticles, AFM, magnetic properties


In this paper magnetic properties of six TiO2 powders doped with 1, 5 and 10mol% Fe and prepared by sol-gel method in two different ways were analysed. The size of the obtained TiO2:Fe particles was in the range 200–350 nm as it was confirmed by SEM and AFM techniques. The magnetization of nanopowders was measured as a function of temperature (1.8-300K) and applied magnetic field. The samples with low Fe content manifest superparamagnetic dependence of magnetization. Whereas, the other compounds exhibit the paramagnetic behaviour with the negative Curie temperature, that suggests the antiferromagnetic ordering. Mass susceptibility decreased with the increase of Fe content as an effect of reduction of the mobility and number of charge carriers. The measurements showed that magnetic properties are correlated much stronger with the synthesis method than with the grain size.


♦ J. Ananpattarachai, P. Kajitvichyanukul, S. Seraphin,Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants, J. Hazard. Mater., 168 (2009) 253-261.
♦ A. Fujishima, K. Hashimoto, T. Watanabe, TiO2 Photocatalysis: Fundamentals and Applications, BKC Inc., Tokyo, Japan, 1999.
♦ Y. Zhang, Y. Chen, P.Westerhoff, J. Crittenden, Impact of natural organicmatter and divalent cations on the stability of aqueous nanoparticles, Water Res.,43 (2009) 4249-4257.
♦ I. Ganesh, A.K. Gupta, P.P. Kumar, P.S. Chandra Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Preparation and characterization of Co-doped TiO2 materials for solar light induced current and photocatalytic applications, Mater. Chem. Phys., 135 (2012) 220-234.
♦ H-W. Wang, H-C. Lin, C-H. Kuo, Y-L. Cheng, Y-C. Yeh, Synthesis and photocatalysis of mesoporous anatase TiO2 powders incorporated Ag nanoparticles, J. Phys. Chem. Solids, 69 (2008) 633-636.
♦ Y. Lai, Y. Chen, H. Zhuang, C. Lin, A facile method for synthesis of Ag/TiO2 nanostructures, Mater. Lett., 62 (2008) 3688-3690.
♦ S.A. Amin, M. Pazouk, A. Hosseinnia, Synthesis of TiO2-Ag nanocomposite with sol-gel method and investigation of its antibacterial activity against E. coli, Powder Technol., 196 (2009) 241-245.
♦ X. S. Li, G. E. Fryxell, C. Wang, M. H. Engelhard, The synthesis of Ag-doped mesoporous TiO2, Micropor. Mesopor. Mater., 111 (2008) 639-642.
♦ Q-H. Wu, A. Fortunelli, G. Granozzi, Preparation, characterisation and structure of Ti and Al ultrathin oxide films on metals, Int. Rev. Phys. Chem., 28 (2009) 517-576.
♦ M. Cernea, C. Valsangiacom, R. Trusca, F. Vasiliu, Synthesis of iron-doped anatase -TiO2 powders by a particulate sol-gel route, J. Optoelectron. Adv. Mater., 9 (2007) 2648-2652.
♦ K. Ranjit, B. Viswanathan, Synthesis, characterization and photocatalytic properties of iron-doped TiO2 catalysts, J. Photochem. Photobiol. A: Chem., 108 (1997) 79-84.
♦ M. Litter, J. Navio, Photocatalytic properties of iron-doped titania semiconductors, J. Photochem. Photobiol. A: Chem., 98 (1996) 171-181.
♦ N.J. Peill, M.R. Hoffmann, Mathematical model of a photocatalytic fiber- optic cable reactor for heterogeneous photocatalysis, Environ. Sci. Technol., 32 (1998) 398-404.
♦ N. Nasralla, M. Yeganeh, Y. Astuti, S. Piticharoenphuna, N. Shahtahmasebi, A. Kompany, M. Karimipour, B.G.Mendis, N.R.J. Poolton, L. Siller, Structural and spectroscopic study of Fe-doped TiO2 nanoparticles prepared by sol-gelmethod, Sci. Iranica F, 20 (2013) 1018.
♦ I. Ganesh, P.P. Kumar,A. K. Gupta, P.S.C. Sekhar,K. Radha, G. Padmanabham, G. Sundararajan, Preparation and characterization of Fe-doped TiO2 powders for solar light response and photocatalytic applications, Process. Appl. Ceram., 6 (2012) 21-36.
♦ K.S. Yao, D.Y. Wang, J.J. Yan, L.Y. Yang, W.S. Chen, Photocatalytic bactericidal effect of TiO2 thin film on plant pathogens, Surf. Coat. Technol., 201 (2007) 6882-6885.
♦ T.C. Cheng, K.S. Yao, N. Yeh, C.I. Chang, H.C. Hsu, Y.T. Chien, C.Y. Chang, Visible light activated bactericidal effect of TiO2/Fe3O4 magnetic particles on fish pathogens, Surf. Coat. Technol., 204 (2009) 1141-1144.
♦ Y. Lui, J.H. Wei, R. Xiong, C.X. Pan, J. Shi, Enhanced visible light photocatalytic properties of Fedoped TiO2 nanorod clusters and monodispersed nanoparticles, Appl. Surf. Sci., 257 (2011) 8121-8126.
♦ Z. Shi, X. Zhang, S. Yao, Preparation and photocatalytic activity of TiO2 nanoparticles co-doped with Fe and La, Particuology, 9 (2011) 260-264.
♦ S.F. Alvarado, Understanding magnetic force microscopy, Exp. Techniques, 383 (1990) 373-383.
♦ Probes and Accessories, Bruker Corporation, (2011) 96-97.
♦ S.S. Kamble, A. Sikora, S.T. Pawar, N.N. Maldar, L.P. Deshmukh, Cobalt sulfide thin films: chemical growth, reaction kinetics and microstructural analysis, J. Alloys Compd., 623 (2015) 466-472.
♦ M. Vijay, V. Selvarajan, K.P. Sreekumar, Y. Jiaguo, L. Shengwei, Characterization and visible light photocatalytic properties of nanocrystalline TiO2 synthesized by reactive plasma processing, Solar Energy Mater. Solar Cells, 93 (2009) 1540-1549.
♦ B. Choudhury, R. Verma, A. Chodhury, Oxygen defect assisted paramagnetic to ferromagnetic conversion in Fe doped TiO2 nanoparticles, RSC Advances, 4 (2014) 29314.
♦ N.H. Hong, J. Sakai, W. Prellier, Distribution of dopant in Fe:TiO2 and Ni:TiO2 thin films, J. Magn. Magn. Mater., 281 (2004) 347-352.
♦ T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, T. Ito, Magnetic and magneto-transport properties of ZnO:Ni films, Physica E, 10 (2001) 260-264.

Example figure:

3D view of the surface of the TiO2:Fe 1%-a sample with colour map representing magnetic response.

Used methods:

Magnetic Force Microscopy