Description of the publication:

Authors:

Agnieszka Hreniak, Katarzyna Gryzło, Bartosz Boharewicz, Andrzej Sikora, Jacek Chmielowiec, Agnieszka Iwan

Title:

Preparation and optical properties of iron-modified titanium dioxide obtained by sol–gel method

Journal:

Optical Materials

Year:

2015

Vol:

46

Pages:

45-51

ISSN/ISBN:

0925-3467

DOI:

10.1016/j.optmat.2015.03.053

Link:

http://www.sciencedirect.com/science/article/pii/S0925346715002098

Keywords:

Fe; Nanoparticles; Doped TiO2; TiO2; Optical and photocatalytic properties; Zeta potential

Abstract:

In this paper twelve TiO2:Fe powders prepared by sol–gel method were analyzed being into consideration the kind of iron compound applied. As a precursor titanium (IV) isopropoxide (TIPO) was used, while as source of iron Fe(NO3)3 or FeCl3 were tested. Fe doped TiO2 was obtained using two methods of synthesis, where different amount of iron was added (1, 5 or 10% w/w). The size of obtained TiO2:Fe particles depends on the iron compound applied and was found in the range 80–300 nm as it was confirmed by SEM technique. TiO2:Fe particles were additionally investigated by dynamic light scattering (DLS) method. Additionally, for the TiO2:Fe particles UV–vis absorption and the zeta potential were analyzed. Selected powders were additionally investigated by magnetic force microscopy (MFM) and X-ray diffraction techniques. Photocatalytic ability of Fe doped TiO2 powders was evaluated by means of cholesteryl hemisuccinate (CHOL) degradation experiment conducted under the 30 min irradiation of simulated solar light.

References:

♦ J. Ananpattarachai, P. Kajitvichyanukul, S. Seraphin, J. Hazardous Mater., 168 (2009), p. 253
♦ A. Fujishima, K. Hashimoto, T. Watanabe, TiO2 Photocatalysis: Fundamentals and Applications, BKC Inc., Tokyo, Japan (1999)
♦ A. Kubacka, M. Fernandez-García, G. Colon, Chem. Rev., 112 (2012), p. 1555
♦ K.M. Parida, Nruparaj Sahu, J. Mol. Catal A. Chem., 287 (2008), p. 151
♦ G.K. Naik, P.M. Mishra, K.M. Parida, Chem. Eng. J., 229 (2013), p. 492
♦ B. Naik, S. Martha, K.M. Parida, Int. J. Hydr. Ener., 36 (2011), p. 2794
♦ S.K. Samantaray, K.M. Parida, J. Mater. Sci., 38 (2003), p. 1835
♦ Y. Zhang, Y. Chen, P. Westerhoff, J. Crittenden, Water Res., 43 (2009), p. 4249
♦ I. Ganesh, A.K. Gupta, P.P. Kumar, P.S. Chandra Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Mater. Chem. Phys., 135 (2012), p. 220
♦ H.-W. Wang, H.-C. Lin, C.-H. Kuo, Y.-L. Cheng, Y.-C. Yeh, J. Phys. Chem. Sol., 69 (2008), p. 633
♦ Y. Lai, Y. Chen, H. Zhuang, C. Lin, Mater. Lett., 62 (2008), p. 3688
♦ S.A. Amin, M. Pazouk, A. Hosseinnia, Powder Technol., 196 (2009), p. 241
♦ X.S. Li, G.E. Fryxell, C. Wang, M.H. Engelhard, Micropor. Mesopor. Mater., 111 (2008), p. 639
♦ Q.-H. Wua, A. Fortunellib, G. Granozzi, Inter. Rev. Phys. Chem., 28 (2009), p. 517
♦ N. Nasralla, M. Yeganeh, Y. Astuti, S. Piticharoenphuna, N. Shahtahmasebi, A. Kompany, M. Karimipour, B.G. Mendis, N.R.J. Poolton, L. Siller, Scientia Iranica F, 20 (2013), p. 1018
♦ M. Cernea, C. Valsangiacom, R. Trusca, F. Vasiliu, J. Optoelectr. Adv. Mater., 9 (2007), p. 2648
♦ K. Ranjit, B. Viswanathan, J. Photochem. Photobiol. A: Chem., 108 (1997), p. 79
♦ M. Litter, J. Navio, J. Photochem. Photobiol. A: Chem., 98 (1996), p. 171
♦ N.J. Peill, M.R. Hoffmann, Environ. Sci. Technol., 32 (1998), p. 398
♦ I. Ganesh, P.P. Kumar, A.K. Gupta, P.S.C. Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Process. Appl. Ceram., 6 (2012), p. 21
♦ K.S. Yao, D.Y. Wang, J.J. Yan, L.Y. Yang, W.S. Chen, Surf. Coat. Technol., 201 (2007), p. 6882
♦ T.C. Cheng, K.S. Yao, N. Yeh, C.I. Chang, H.C. Hsu, Y.T. Chien, C.Y. Chang, Surf. Coat. Technol., 204 (2009), p. 1141
♦ Y. Liu, J.H. Wei, R. Xiong, C.X. Pan, J. Shi, Appl. Surf. Sci., 257 (2011), p. 8121
♦ Z. Shi, X. Zhang, S. Yao, Particuology, 9 (2011), p. 260
♦ K.M. Parida, G.K. Pradhan, Mater. Chem. Phys., 123 (2010), p. 427
♦ B. Naik, K.M. Parida, Ind. Eng. Chem. Res., 49 (2010), p. 1191
♦ N.A.M. Barakata, A. Taha, M. Motlak, M.M. Nassar, M.S. Mahmoud, S.S. Al-Deyab, M. El-Newehyd, H.Y. Kim, Appl. Cat. A: Gen., 481 (2014), p. 19
♦ S. Higashimoto, R. Shirai, Y. Osano, M. Azuma, H. Ohue, Y. Sakata, H. Kobayash, J. Catal., 311 (2014), p. 137
♦ K. Apiwong-Ngarm, P. Pongwan, B. Inceesungvorn, S. Phanichphant, K. Wetchakun, N. Wetchakun, Powder Technol., 266 (2014), p. 447
♦ L.G. Devi, M.L.A. Kumari, App. Surf. Sci., 276 (2013), p. 521
♦ D. Wodka, R.P. Socha, E. Bielanska, M. Elzbieciak–Wodka, P. Nowak, P. Warszynsk, App. Surf. Sci., 319 (2014), p. 173
♦ S. Neubert, P. Pulisova, C. Wiktor, P. Weide, B. Mei, D.A. Guschin, R.A. Fischer, M. Muhler, R. Beranek, Catal. Today, 230 (2014), p. 97
♦ N. Guskos, S. Glenis, G. Zolnierkiewicz, A. Guskos, J. Typek, P. Berczynski, D. Dolat, B. Grzmil, B. Ohtani, A.W. Morawski, J. Alloys Comp., 606 (2014), p. 32
♦ V.S. Rudnev, M.V. Adigamova, I.V. Lukiyanchuk, I.A. Tkachenko, V.P. Morozova, J. Alloys Comp., 618 (2015), p. 623
♦ M. Nakamura, A. Ono, E. Bae, N. Murakami, T. Ohno, Appl. Cat. B: Env., 130–131 (2013), p. 264
♦ T. Ohnoa, T. Higo, H. Saito, S. Yuajn, Z. Jin, Y. Yang, T. Tsubot, J. Molec. Cat. A: Chem., 396 (2015), p. 261
♦ D. Dolat, S. Mozia, B. Ohtani, A.W. Morawsk, Chem. Eng. J., 225 (2013), p. 358
♦ Y. Tian, H. Cao, Y. Qiao, F. Meng, X. Liu, Acta Biomaterialia, 10 (2014), p. 4505
♦ S.F. Alvarado, Understanding magnetic force microscopy, Exp. Technol., 383 (1990), pp. 373–383
♦ http://www.brukerafmprobes.com/p-3313-mesp-lc.aspx. (accessed 17.11.14).
♦ http://www.imagemet.com/. (accessed 17.11.14).
♦ L. Kavan, M. Gratzel, S.E. Gilbert, C. Klemenz, H.J. Scheel, J. Am. Chem. Soc., 118 (1996), p. 6716
♦ M.D. Ward, J.R. White, A.J. Bard, J. Am. Chem. Soc., 105 (1983), p. 27
♦ K. Moganisian, A. Hreniak, A. Sikora, D. Gaworska-Koniarek, A. Iwan, Proc. App. Ceram., 9 (2015), p. 43
♦ A. Hreniak, A. Sikora, A. Iwan, Intern. J. Mater. Chem., 4 (2014), p. 15

Example figure:

3D view of the surface of the sample

Used methods:

TapppingMode