Description of the publication:

Authors:

A. Iwan, B. Boharewicz, I. Tazbir, A. Sikora, M. Maliński, Ł. Chrobak, W. Mad

Title:

Laser Beam Induced Current Technique of Polymer Solar Cells Based on New Poly (Azomethine) or Poly (3-Hexylthiophene)

Journal:

Chemical Science Review and Letters

Year:

2015

Vol:

4

Pages:

597–607

ISSN/ISBN:

2278-6783

DOI:

---

Link:

http://www.sciencedirect.com/science/article/pii/S0304885315300391

Keywords:

poly(azomethine)s, P3HT, polymeric photovoltaics, bulk heterojunction solar cells, light beam induced current.

Abstract:

We synthesized new, air- and thermally stable poly(azomethine) with carbazole and triphenylamine moieties (PAZ-Car-TPA) and characterized their photovoltaic properties by Solar Simulator Model SS100AAA with AM 1.5G with an irradiation intensity of 100 mW/cm2. The bulk heterojunction polymer solar cells with an active layer based on PAZ-Car-TPA as a donor and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) as an acceptor were fabricated and studied. Moreover, devices with poly(3-hexylthiophene) (P3HT) were constructed and compared with polymer solar cells based on PAZ-Car-TPA. The laser beam induced current (LBIC) technique with a 420 nm laser with a beam size of the diameter of 100 µm was used to investigate electrical properties of constructed polymer solar cells. Additionally, a morphology of PAZ-Car-TPA, P3HT, PAZ-Car-TPA:PCBM and P3HT:PCBM was investigated by the atomic force microscopy.

References:

♦ E. Bundgaard, F.C. Krebs, Sol. Energ. Mat. Sol. C 91, 954-985, 2007.
♦ S. Günes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 107,1324-1338, 2007.
♦ X. Zhan, D. Zhu, Polym. Chem. 1, 409-419, 2010.
♦ W. Cai, X. Gong, Y. Cao, Sol. Energ. Mat. Sol. C 94, 114-127, 2010.
♦ Y. Li, Acc. Chem. Res. 45, 723-733, 2012.
♦ J. Kesters, S. Kudret, S. Bertho, N. van den Brande, M. Defour, B. van Mele, H. Penxten, L. Lutsen, J. Manca,
♦ D. Vanderzande, W. Maes, Org. Electr. 15, 549-562, 2014.
♦ L.M. Chen, Z. Hong, G. Li, Y. Yang, Adv. Mater. 21, 1434-1449, 2009.
♦ D. Venkataraman, S. Yurt, B.H. Venkatraman, N. Gavvalapalli, J. Phys. Chem. Lett. 1, 947-958, 2010.
♦ J.T. Chen, C.S. Hsu, Polym. Chem. 2, 2707-2722, 2011.
♦ G. Dennler, M.C. Scharber, C.J. Brabec, Adv. Mater. 21, 1323-1338, 2009.
♦ J.M. Nunzi, C R Physique. 3, 523-542, 2002.
♦ M.C. Scharber, N.S. Sariciftci, Prog. Polym. Sci. 38, 1929-1940, 2013.
♦ H. Zhou, L. Yang, W. You, Macromolecules 45, 607-632, 2012.
♦ Iwan, A. Chuchmała Prog. Polym. Sci. 37, 1805-1828, 2012.
♦ G. Chen, J. Seo, C. Yang, P.N. Prasad, Chem. Soc. Rev. 42, 8304-8338, 2013.
♦ K.D.G.I. Jayawardena, L. J. Rozanski, C.A. Mills, M.J. Beliatis, N.A. Nismy, S.R.P. Silva, Nanoscale 5, 8411-8427, 2013.
♦ M. Notarianni, K. Vernon, A. Chou, M. Aljada, J. Liu, N. Motta, Solar Energy 106, 23-37, 2014.
♦ G. Garcia-Belmonte, A. Munar, E.M. Barea, J. Bisquert, I. Ugarte, R. Pacios, Org. Electr. 9, 847-851, 2008.
♦ B.J. Leever, C.A. Bailey, T.J. Marks, M.C. Hersam, M.F. Durstock, Adv. Energy Mater. 2, 120-128, 2012.
♦ Y. Zhang, X-D. Dang, M. Kuik, S.R. Cowan, P. Zalar, C. Kim, T-Q. Nguyen, Energy Environ. Sci. 6, 1766-1771, 2013.
♦ Iwan, A. Sikora, V. Hamplová, A. Bubnov, Liquid Crystals, 2015, http://dx.doi.org/10.1080/02678292.2015.1011243.
♦ Sikora, A. Iwan, High Performance Polymers, 24, 218-228, 2012
♦ H. Kim, S.H. Lee, H.S. Noh, K. kim, Y. Lee, J. Kim, J. Joo, Org. Electr. 13, 1377-1381, 2012.
♦ K.P. Korona, S. Grankowska, A. Iwan, T. Korona, D. Rutkowska-Zbik, M. Kamińska, Elektronika, 9, 92-94, 2014.
♦ G.D. Sharma, S.G. Sandogaker, M.S. Roy, Thin Solid Films 278, 129-134, 1996.
♦ JC Hindson, B Ulgut, RH Friend, NC Greenham, B Norder, A Kotlewski, TJ. Dingemans, J Mater Chem 2010,20, 937-44.
♦ Iwan, M. Palewicz, A. Chuchmała, L. Gorecki, A. Sikora, B. Mazurek, G. Pasciak, Synt. Met., 162, 143-153,2012.
♦ Iwan, E. Schab-Balcerzak, K. P. Korona, S. Grankowska, M. Kamińska, Synth. Met., 185-186, 17-24, 2013.
♦ Iwan, E. Schab-Balcerzak, D. Pociecha, M. Krompiec, M. Grucela, P. Bilski, M. Kłosowski, H. Janeczek, Opt.Mat., 34, 61–74, 2011.
♦ M. Palewicz, A. Iwan, M. Sibiński, A. Sikora, B. Mazurek, Energy Procedia, 3, 84-91, 2011.
♦ Iwan, M. Palewicz, A. Chuchmała, A. Sikora, L. Gorecki, D. Sek, High Performance Polymers, 25, 832–842,2013.
♦ Iwan, B. Boharewicz, K. Parafiniuk, I. Tazbir, L. Gorecki, A. Sikora, M. Filapek, E. Schab-Balcerzak, SynthMet. 195, 341-349, 2014.
♦ Iwan, B. Boharewicz, I. Tazbir, M. Filapek, Electrochimica Acta, 159, 81-92, 2015.
♦ Iwan, B. Boharewicz, I. Tazbir, M. Malinowski, M. Filapek, T. Kłąb, B. Luszczynska, I. Glowacki, K. P.Korona, M. Kaminska, J. Wojtkiewicz, M. Lewandowska, A. Hreniak, Solar Energy, 2015, http://dx.doi.org/10.1016/j.solener.2015.03.051.
♦ Bolduc, S. Barik, M. R. Lenze, K. Meerholz, W.G. Skene, J. Mat. Chem. A 2, 15620-15626, 2014.
♦ W.S.M. Brooks, S.J.C. Irvine, V. Barrioz, A.J. Clayton, Sol. Energ. Mat. Sol. Cel. 101, 26-31, 2012.
♦ W.S.M. Brooks, S.J.C. Irvine, V. Barrioz, Energ. Proc. 10, 232-237, 2011.

Example figure:

3D view of the surface of the sample

Used methods:

TapppingMode