Description of the publication:

Authors:

S. S. Kamble, D. P. Dubal, N. L. Tarwal, A. Sikora, J. H. Jang, L. P. Deshmukh

Title:

Studies on the ZnxCo1-xS Thin Films: A Facile Synthesis Process and Characteristic Properties

Journal:

Journal of Alloys and Compounds

Year:

2016

Vol:

656

Pages:

590-597

ISSN/ISBN:

0925-8388

DOI:

10.1016/j.jallcom.2015.10.011

Link:

http://www.sciencedirect.com/science/article/pii/S0925838815312676

Keywords:

Chemical deposition; ZnxCo1-xS thin films; XPS; FESEM; AFM; Optical measurements

Abstract:

We have synthesized a series of ZnxCo1-xS (0 ≤ x ≤ 0.4) thin films via the facile and industry preferred chemical deposition. Under the pre-optimized conditions (temperature = 80 ± 0.5 °C, substrate rotation = 65 ± 2 rpm, pH = 9.0 ± 0.1 and duration = 90 min) the deposited films were physically hard, uniform, tightly adherent to the substrate support. As-grown CoS and ZnxCo1-xS thin films were analyzed for compositional analysis, structural determinations, morphological studies and optical measurements. Elemental analysis determined replacement of Co2+ ions from the CoS lattice by Zn2+ ions, while a trivial scattering in the virtually constant S-content was observed. Elemental analysis using X-ray photoelectron spectroscopy established chemical states of constituting elements as Co2+, Zn2+ and S2-. Hexagonal structure with growth orientation along <101> up to x = 0.25 was observed in the structural studies and above x = 0.25, change in growth orientation along <100> was detected. Enhancement in self-organized growth module ensued the formation of fuzzy microstructure. Improvement in the hillocks with the integration of Zn2+ into CoS host was countersigned in the surface topography. The optical transmission spectra of the CoS and ZnxCo1-xS thin films were analyzed to evaluate the absorption coefficient (α). A systematic increase in α has been found and can be attributed to the creation of more localized states within the band tails due to the existence of defects and disorders.

References:

♦ R. Sarkar, C.S. Tiwary, P. Kumbhakar, A.K. Mitra Phys. B, 404 (2009), pp. 3855–3858
♦ A.D. Mani, M. Deepa, P. Ghosal, C. Subrahmanyama Electrochim. Acta, 139 (2014), pp. 365–373
♦ S. Sambasivam, D.P. Joseph, J.G. Lin, C. Venkateswaran J. Solid State Chem., 182 (2009), pp. 2598–2601
♦ T. Liu, H. Ke, H. Zhang, S. Duo, Q. Sun, X. Fei, G. Zhou, H. Liu, L. Fan Mater. Sci. Semicond. Process., 26 (2014), pp. 301–311
♦ C. Song, B. Chen, Y. Chen, Y. Wu, Z. Zhuang, X. Lu, X. Qiao, X. Fan J. Alloy. Compd., 590 (2014), pp. 546–552
♦ R.L. Gunshor, L.A. Kolodziejski, A.V. Nurmikko, N. Otsuka (Eds.), Semiconductors and Semimetals, vol. 33. Chapter 6. Molecular-Beam Epitaxy of II-VI Semiconductor Microstructures, 338–403.
♦ K. Qi, J. Yu, K. Chen Cryst. Res. Technol., 48 (2013), pp. 1083–1086
♦ S.T. Mane, P.C. Pingale, S.A. Lendave, V.S. Karande, L.P. Deshmukh, M. Sharon Electrochim. Acta, 102 (2013), pp. 113–119
♦ S.T. Mane, P.C. Pingale, R.V. Suryawanshi, V.S. Karande, L.P. Deshmukh, M. Sharon Electrochim. Acta, 114 (2013), pp. 494–499
♦ S.S. Kamble, A. Sikora, S.T. Pawar, R.C. Kambale, N.N. Maldar, L.P. Deshmukh J. Alloy. Compd., 631 (2015), pp. 303–314
♦ I. Polat, S. Aksu, M. Altunbas, E. Bacaksiz Mater. Chem. Phys., 130 (2011), pp. 800–805
♦ S.P. Patel, J.C. Pivin, A.K. Chawla, R. Chandra, D. Kanjilal, L. Kumar J. Magn. Magn. Mater., 323 (2011), pp. 2734–2740
♦ W.J. Fang, Y.S. Liu, B.Z. Guo, L. Peng, Y.B. Zhong, J.C. Zhang, Z.J. Zhao J. Alloy. Compd., 584 (2014), pp. 240–243
♦ L.J. Tang, G.F. Huang, Y. Tian, W.Q. Huang, M.G. Xia, C. Jiao, J.P. Long, S.Q. Zhan Mater. Lett., 100 (2013), pp. 237–240
♦ M.S. Akhtar, M.A. Malik, S. Riaz, S. Naseem, P. O'Brien Mater. Sci. Semicond. Process., 30 (2015), pp. 292–297
♦ B. Poornaprakash, D.A. Reddy, G. Murali, N.M. Rao, R.P. Vijayalakshmi, B.K. Reddy J. Alloy. Compd., 577 (2013), pp. 79–85
♦ P. Yang, M. Lu, D. Xu, D. Yuan, C. Song, G. Zhou J. Phys. Chem. Solids, 62 (2001), pp. 1181–1184
♦ L. Liu, L. Yang, Y. Pu, D. Xiao, J. Zhu Mater. Lett., 66 (2012), pp. 121–124
♦ J.S. Jang, E.S. Kim, S.H. Choi, D.H. Kim, H.G. Kim, J.S. Lee Appl. Catal. A Gen., 427–428 (2012), pp. 106–113
♦ S.T. Mane, S.S. Kamble, L.P. Deshmukh Mater. Lett., 65 (2011), pp. 2639–2641
♦ S.S. Kamble, A. Sikora, S.T. Pawar, N.N. Maldar, L.P. Deshmukh J. Alloy. Compd., 623 (2015), pp. 466–472
♦ F.C. Eze, C.E. Okeke Mater. Chem. Phys., 47 (1997), pp. 31–36
♦ A.A. Carbajal Readigos, V.M. Garcia, O. Gomezdaza, J. Campos, M.T.S. Nair, P.K. Nair Semicond. Sci. Technol., 15 (2000), pp. 1022–1029
♦ C. Carraro, O.W. Yauw, M.M. Sung, R. Maboudian J. Phys. Chem. B, 102 (1998), pp. 4441–4445
♦ Miller, S. Veeramasuneni, J. Drelich, M.R. Yalamanchili, G. Yamauchi Polym. Eng. Sci., 36 (1996), p. 1849
♦ J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomden, J. Chastain (Eds.), Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Prairie, Minnesota (1992)
♦ G.A. Garson, M.H. Nassir, M.A. Langell J. Vac. Sci. Technol. A, 14 (1996), p. 1637
♦ M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.St.C. Smart Appl. Surf. Sci., 257 (2011), pp. 2717–2730
♦ JCPDS Cards: CoS-03-065-0407, CoS-03-065-3418, CoS-01-075-0605, CoS2-00-041-1471, ZnS-01-079-2204, ZnS-01-080-0007.
♦ G.B. Sakr, I.S. Yahia, G.M. El-Komy, A.M. Salem Surf. Coat. Technol., 205 (2011), pp. 3553–3558
♦ A.N. Chattarki, L.P. DeshmukhJ. Alloy. Compd., 597 (2014), pp. 223–229
♦ V.S. Karande, S.H. Mane, V.B. Pujari, L.P. Deshmukh Mater. Lett., 59 (2005), pp. 148–152
♦ S.A. Lendave, P.C. Pingale, L.P. Deshmukh Rare Metal Mater. Eng., 41 (2012), pp. 43–46
♦ S. Kumar, P. Sharma, V. Sharma J. Nanopart. Res., 15 (2013), p. 1662
♦ J. Luengo, N.V. Joshi Mater. Lett., 26 (1996), pp. 47–50

Example figure:

3D view of the surface of the sample.

Used methods:

TapppingMode
Magnetic Force Microscopy