Description of the publication:

Authors:

Andrzej Sikora

Title:

Rozwój i zastosowanie zaawansowanych technik mikroskopii sił atomowych w diagnostyce materiałów elektrotechnicznych. Wybrane zagadnienia

Journal:

Prace Instytutu Elektrotechniki

Year:

2012

Vol:

257

Pages:

1–186

ISSN/ISBN:

0032–6216

DOI:

-----

Link:

http://bambus.iel.waw.pl/pliki/ogolne/prace%20IEL/257/zeszyt%20257.pdf

Keywords:

Mikroskopia sił atomowych, techniki pomiarowe, właściwości mechaniczne

Abstract:

Dynamiczny rozwój inżynierii materiałowej, w której coraz liczniejszą grupę tworzą tzw. nanomateriały, wymusza stosowanie narzędzi pomiarowych pozwalających uzyskać informacje o zjawiskach i efektach obecnych w skali nanometrowej, a decydujących o właściwościach makroskopowych wytwarzanych obiektów. Mikroskopia sił atomowych (AFM) jest jedną z technik diagnostycznych umożliwiających pomiar właściwości powierzchni w skali mikrometrowej oraz nanometrowej. Realizowane za jej pomocą badania powierzchni materiałów stosowanych w elektrotechnice mogą obejmować szerokie spektrum właściwości. Uzyskiwane w ten sposób informacje pozwalają zrozumieć zależności między parametrami technologicznymi wytwarzania materiału a jego właściwościami makroskopowymi, dzięki czemu możliwe jest sterowanie procesem produkcyjnym w celu uzyskania finalnego produktu o pożądanych cechach poprzez wpłynięcie na jego nanoskopową strukturę.
Niniejsza praca przedstawia rozwój oraz zastosowanie wybranych technik pomiarowych mikroskopii sił atomowych w diagnostyce właściwości mechanicznych, elektrycznych, magnetycznych i termicznych materiałów oraz struktur takich jak: azometiny, tłoczywa termoutwardzalne, polimery silikonowe, cienkie warstwy NiFe, mikrostruktury półprzewodnikowe oraz nanostruktury grafenowe. Zarejestrowane wyniki pomiarowe wykorzystano do zademonstrowania możliwości interpretacyjnych w odniesieniu do parametrów technologicznych, rezultatów innych badań lub też czynników wpływających na badaną próbkę.
Do każdej grupy przykładów zastosowania określonego trybu pomiarowego, wprowadzenie stanowi zwarty opis podstaw teoretycznych oraz praktyki pomiarowej. Metody i rozwiązania opracowane przez autora zostały opisane szczegółowo, z uwagi na potencjalne trudności z uzyskaniem dostępu do alternatywnych źródeł informacji. Demonstracja szerokiego spektrum zastosowań opisanych metod diagnostycznych jest jednocześnie dowodem uniwersalności i przydatności mikroskopii sił atomowych w prowadzonych badaniach ukierunkowanych na opracowanie nowych, energooszczędnych, trwałych oraz ekologicznych materiałów do zastosowań w elektrotechnice.

References:

♦ Dziennik Urzędowy Unii Europejskiej, L 275, Tom 54., 2011.
♦ Reibold M., Paufler P., Levin A.A., Kochmann W., Pätzke N., Meyer D.C.: Materials: carbon nanotubes in an ancient Damascus sabre. Nature, 444 (7117), p. 286, 2006.
♦ Ratner M.A., Ratner D.: Nanotechnology: A Gentle Introduction to the Next Big Idea. ISBN–10: 0131014005 Prentice Hall, 2003
♦ http://www.ipt.arc.nasa.gov/nanotechnology.html. 2011.
♦ Boysen E., Muir N.C.: Nanotechnology For Dummies. 2nd ed., ISBN–10: 0764583689, John Wiley & Sons, 2011.
♦ CORDIS focus nr 22. Komisja Europejska, p. 46, 2006.
♦ Siegrist M., Gutscher H., Keller C.: Nanotechnology - Opportunities and Risks. Zurich, Swiss Federal Institute of Technology (ETH), 2007.
♦ Nanoscience and nanotechnologies: opportunities and uncertainties. The Royal Society & The Royal Academy of Engineering, 2004.
♦ Rep Gordon B.: National Nanotechnology Initiative Amendments Act of 2008. Dokumenty kongresu USA, H.R. 5940, 2008.
♦ Binnig G., Quate C.F., Gerber C.: Atomic force microscope. Phys. Rev. Lett., 56, pp. 930–933, 1986.
♦ Rhodin T.: Scanning probe microscopies, nanoscience and nanotechnology. Nature, 143, pp. 141–143, 2001.
♦ Bottomley L.A., Coury J.E., First P.N.: Scanning Probe Microscopy. Anal. Chem., 68 (12), pp. 185–230, 1996.
♦ Morita S.: Roadmap of Scanning Probe Microscopy. ISBN 978–3–540–34314–1, Springer, 2007.
♦ Wickramasinghe H.K.: Progress in scanning probe microscopy. Acta Materialia, 48 (1), pp. 347–358, Jan. 2000.
♦ Giessibl F.J.: Atomic resolution on Si(111)–(7×7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork. Applied Physics Letters, 76 (11), p. 1470, 2000.
♦ Giessibl F.J.: AFM's path to atomic resolution. Materials Today, 8 (5), pp. 32–41, 2005.
♦ Schimmel T., Koch T., Küppers J.: True atomic resolution under ambient conditions obtained by atomic force microscopy in the contact mode. 402, pp. 399–402, 1999.
♦ Komisja Europejska,Towards a European Strategy for Nanotechnology. 2004.
♦ Gonz M.L., Nuevo M.J., Méndez–Vilas a, González–Martin M.L.: Optical interference artifacts in contact atomic force microscopy images. Ultramicroscopy, 92 (3)-(4), pp. 243–50, 2002.
♦ Velegol S.B., Pardi S., Li X., Velegol D., Logan B.E.: AFM Imaging Artifacts due to Bacterial Cell Height and AFM Tip Geometry. Society, (11), pp. 851–857, 2003.
♦ Sikora A., Sokolov D., Danzebrink H.–U.: Scanning probe microscope set–up with interferometric drift compensation. Nanoscale Calibration Standards and Methods, pp. 109–118, ISBN:978–3–527–40502–2, Wiley–VCH, 2005.
♦ Zaręba–Grodź I., Miśta W., Sikora A., Gotszalk T., Stręk W., Hermanowicz K., Maruszewski K.: Textural properties of silica–based organic–inorganic polymer hybrid xerogels. Materials Science–Poland, 23 (1), pp. 147–158, 2005.
♦ Sikora A.: Układ kontroli parametrów środowiskowych w komorze pomiarowej mikroskopu NC–AFM. Elektronizacja, 12, pp. 81–82, 2005.
♦ Gotszalk T., Sikora A., Kolanek K., Szeloch R., Szmidt J., Grabiec P., Rangelow I.W., Mitura S.: Metody mikroskopii bliskiego pola od mikro do nanoelektroniki: diagnostyka, wytwarzanie. Elektronika, 46 (11), pp. 14–18, 2005.
♦ Kolanek K., Sikora A., Gotszalk T., Szeloch R.: Sterowanie procesem nanolitografii w modularnej mikroskopii bliskich oddziaływań. Czwarta Krajowa Konferencja Elektroniki, pp. 525–529, 2005.
♦ Sikora A., Gotszalk T., Szeloch R.: Combined shear–force/field emission microscope for local electrical surface investigation. Microelectronic Engineering, 84 (3), pp. 542–546, 2007.
♦ Sikora A.: Correction of structure width measurements performed with a combined shear–force/tunneling microscope. Measurement Science and Technology, 2 (18), pp. 456–461, 2007.
♦ Sikora A., Szeloch R.: Eliminacja artefaktów w wynikach pomiarów w mikroskopii bliskiego pola, z zastosowaniem porównawczej transformaty Fouriera. Prace Wrocławskiego Towarzystwa Naukowego, seria B, 214, pp. 163–168, 2008.
♦ Sikora A., Gotszalk T., Szeloch R., Serafińczuk J., Jóźwiak G.: Mikroskopia bliskiego pola Shear Force/sił atomowych z interpretacją wyników poddanych transformacie FFT. Elektronika, 49 (11), pp. 220–222, 2008.
♦ Sikora A.: Zastosowanie mikroskopii bliskich oddziaływań w badaniach materiałów oraz struktur elektrycznych i elektronicznych. Nowa Elektrotechnika, 51 (11), pp. 3–6, 2008.
♦ Sikora A.: Cyfrowa rekonstrukcja przekroju mikrostruktur na podstawie kilku pomiarów powierzchni metodami mikroskopii sił atomowych. Prace Wrocławskiego Towarzystwa Naukowego, seria B, 214, pp. 33–36, 2008.
♦ Sikora A.: Reconstruction of feature shape and dimension through data processing of sequenced various angle atomic force microscopy (AFM) scans. Measurement Science and Technology, 20 (8), p. 084016, 2009.
♦ Sikora A.: Utilization of the Electrostatic Force Microscopy for detection filler grains in nanocomposytes and its distribution evaluation. Optica Applicata, 116 (4), pp. 933–941, 2009.
♦ Żyłka P., Łowkis B., Sikora A.: Space charge–modified actuation response in layered electrostatically–stricted electroactive polymer structures. 12th International Conference MTCM'2009, pp. 362–365, 2009.
♦ Sikora a, Gotszalk T.: The issues of near field interaction detection in developed combined shear force/ emission microscope. Journal of Physics: Conference Series, 146, p. 12036, 2009.
♦ Sikora A.: The influence of the electrical field on structures dimension measurement in Electrostatic Force Microscopy mode. Optica Applicata, 39 (4), pp. 933–941, 2009.
♦ Sikora A., Szeloch R., Prociów E.: Characterization of the different energy–gap multilayer structures using near field microscopy. Optica Applicata, 116 (4), pp. 99–101, 2009.
♦ Sikora A., Gotszalk T., Szeloch R.: Nanoscale evaluation of thin oxide film homogeneity with combined shear force emission microscope. Materials Science–Poland, 27 (4/2), pp. 1171–1178, 2009.
♦ Sikora A., Gotszalk T., Szeloch R., Serafińczuk J., Jóźwiak G., Szecówka P.: Application of FFT transformation for correlation analysis of near field microscopy measurements. Journal of Physics: Conference Series, 146, p. 12036, 2009.
♦ Sikora A., Bednarz Ł.: Utilization of digital processing of the optical scanning field view for tip–sample distance estimation during the approach procedure. Acta Physica Polonica A, 116, pp. 99–101, 2009.
♦ Ozimek M., Sikora A., Gaworska–Koniarek D., Wilczyński W.: Nanoskopowa analiza struktury domenowej materiałów magnetycznych z wykorzystaniem mikroskopii bliskiego pola. Przegląd Elektrotechniczny, 86 (4), pp. 72–74, 2010.
♦ Sikora A., Bednarz L.: System zaawansowanej analizy sygnałów do pomiaru właściwości mechanicznych powierzchni w mikroskopii sił atomowych. Przegląd Elektrotechniczny, 86 (11A), pp. 207–210, 2010.
♦ Schab–Balcerzak E., Iwan A., Krompiec M., Siwy M., Tapa D., Sikora A., Palewicz M.: New thermotropic azomethine-naphthalene diimides for optoelectronic applications. Synthetic Metals, 160 (19)-(20), pp. 2208–2218, 2010.
♦ Iwan A., Pociecha D., Sikora A., Janeczek H., Węgrzyn M.: Characterisation and mesomorphic behaviour of new aliphatic–aromatic azomethines containing ester groups. Liquid Crystals, 37 (12), pp. 1479–1492, 2010.
♦ Sęk D., Jarząbek B., Grabiec E., Kaczmarczyk B., Janeczek H., Sikora A., Hreniak A., Palewicz M., Łapkowski M., Karon K., Iwan A.: A study of thermal, optical and electrical properties of new branched triphenylamine–based polyazomethines. Synthetic Metals, 160 (19)-(20), pp. 2065–2076, 2010.
♦ Sikora A., Bednarz S.: System interaktywnej wizualizacji wyników pomiarowych mikroskopii bliskiego pola. Prace Wrocławskiego Towarzystwa Naukowego, seria B, 216, pp. 125–130, 2010.
♦ Górnicka B., Sikora A., Wojcieszak D.: Surface morphology study and dielectric properties of polyesterimide nanocomposite. Elektronika, (3), pp. 66–68, 2010.
♦ Sikora A.: Nanoskopowa ocena właściwości mechanicznych powierzchni materiałów dla elektrotechniki i elektroniki. Nowa Elektrotechnika, 69 (5), pp. 6–11, 2010.
♦ Sikora A., Kędzia A.: Analiza struktur opony twardej w okresie prenatalnym w mikroskopii sił atomowych. Prace Wrocławskiego Towarzystwa Naukowego, seria B, 216, pp. 267–271, 2010.
♦ Iwan A., Palewicz M., Sikora A., Chmielowiec J., Hreniak A., Paściak G., Bilski P.: Aliphatic-aromatic poly(azomethine)s with ester groups as thermotropic materials for opto(electronic) applications. Synthetic Metals, 160 (17)-(18), pp. 1856–1867, Sep. 2010.
♦ Iwan A., Sęk D., Pociecha D., Sikora A., Palewicz M., Janeczek H.: New discotic–shaped azomethines with triphenylamine moieties: Thermal, structural behaviors and opto–electrical properties. Journal of Molecular Structure, 981 (1)-(3), pp. 120–129, Sep. 2010.
♦ Sikora A., Bednarz L., Szeloch R.: Zaawansowane przetwarzanie i analiza sygnałów pomiarowych w czasie rzeczywistym w systemie mikroskopii bliskiego pola. Prace Wrocławskiego Towarzystwa Naukowego, seria B, 216, pp. 117–124, 2010.
♦ Iwan A., Bilski P., Janeczek H., Jarząbek B., Domański M., Rannou P., Sikora A., Pociecha D., Kaczmarczyk B.: Thermal, optical, electrical and structural study of new symmetrical azomethine based on poly(1,4–butanediol)bis(4–aminobenzoate). Journal of Molecular Structure, 963 (2)-(3), pp. 175–182, 2010.
♦ Kudła S., Szpilska K., Sikora A., Warycha J.: SEM and AFM imaging of inorganic nanotubes. Journal of Polish Applied Chemistry, 2, pp. 73–80, 2011.
♦ Bastrzyk A., Polowczyk I., Sadowski Z., Sikora A.: Relationship between properties of oil/water emulsion and agglomeration of carbonate minerals. Separation and Purification Technology, 77 (3), pp. 325–330, 2011.
♦ Sikora A., Bednarz L.: Procedura doboru parametrów oddziaływania ostrze–próbka w celu uzyskania optymalnej rekonstrukcji krzywej spektroskopii sił w trybie pomiarowym NanoSwing mikroskopii sił atomowych. Metrologia dziś i jutro - 2011, red. W. Walendziuk, J. Jakubiec, M. Świercz, ISBN: 978–83–62582–04–4 Oficyna Wydawnicza Politechniki Białostockiej, Białystok pp. 199–212, 2011.
♦ Palewicz M., Iwan A., Sibiński M., Sikora A., Mazurek B.: Organic photovoltaic devices based on polyazomethine and fullerene. Energy Procedia, 3, pp. 84–91, 2011.
♦ Sikora A.: Utilization of various atomic force microscopy techniques in investigation of liquid crystal compounds. Liquid crystalline organic compounds and polymers as materials XXI century: From synthesis to applications, Agnieszka Iwan, Ewa Schab–Balcerzak editors, ISBN: 978–81–7895–523–0, Research Signpost, pp. 191–219, 2011.
♦ Sikora A., Bednarz L.: Utilization of AFM mapping of surface's mechanical properties in diagnostics of the materials for electrotechnics. Prace Instytutu Elektrotechniki, 253, pp. 15–25, 2011.
♦ Sikora A.: The method of minimizing the impact of local residual electrostatic charge on dimensional measurement accuracy in atomic force microscopy measurements. Measurement Science and Technology, 22 (9), p. 94022, 2011.
♦ Sikora A.: Diagnostyka struktur półprzewodnikowych z wykorzystaniem zaawansowanych technik bliskiego pola. Elektronika, (3), pp. 66–68, 2011.
♦ Sikora A., Bednarz L.: The accuracy of an optically supported fast approach solution for scanning probe microscopy (SPM)–measuring devices. Measurement Science and Technology, 22 (9), p. 94015, 2011.
♦ Iwan A., Schab–Balcerzak E., Siwy M., Sikora A., Palewicz M., Janeczek H., Sibiński M.: New aliphatic-aromatic tetraphenylphthalic–based diimides: Thermal, optical and electrical study. Optical Materials, 33 (6), pp. 958–967, 2011.
♦ Sikora A., Bednarz L.: Direct measurement and control of peak tapping forces in atomic force microscopy for improved height measurements. Measurement Science and Technology, 22 (9), p. 94005, 2011.
♦ Sikora A., Bednarz L.: Mapping of mechanical properties of the surface by utilization of torsional oscillation of the cantilever in atomic force microscopy. Central European Journal of Physics, 9 (2), pp. 372–379, 2011.
♦ Iwan A., Palewicz M., Chuchmała A., Górecki L., Sikora A., Mazurek B., Paściak G.: Opto(electrical) properties of new aromatic polyazomethines with fluorene moieties in the main chain for polymeric photovoltaic devices. Synthetic Metals, 162 (1)-(2), pp. 143–153, 2012.
♦ Palewicz M., Iwan A., Sikora A., Doskocz J., Stręk W., Sęk D., Mazurek B.: Optical, structural and electrical properties of aromatic triphenylamine - based poly(azomethine)s in thin layers. Acta Physica Polonica A, 121 (2), pp. 439–444, 2012.
♦ Sikora A., Woszczyna M., Friedemann M., Ahlers F.J., Kalbac M.: AFM diagnostics of graphene–based quantum Hall devices. Micron, 43, pp. 479–486, 2012.
♦ Sikora A., Bednarz Ł.: The implementation and the performance analysis of the multi–channel software–based lock–in amplifier for the stiffness mapping with atomic force microscope (AFM). Bulletin of the Polish Academy of Sciences: Technical Sciences, 60 (1), pp. 83–88, 2012.
♦ Sikora A., Kędzia A.: Quantitative comparison of the dura mater tissue structures measured with atomic force microscopy. Advances in Clinical and Experimental Medicine, p. w druku, 2012.
♦ Sikora A., Bednarz L.: Mapping of the surface's mechanical properties due to analysis of torsional cantilever bending in dynamic force microcopy. Scanning Probe Acoustic Techniques, p. w druku, 2012.
♦ Sikora A., Iwan A.: AFM study of the mechanical wear phenomena of the polyazomethine with thiophene rings: Tapping mode, phase imaging mode and force spectroscopy. High Performance Polymers, 24 (3), pp. 218–228, 2012.
♦ Szubzda B., Gaworska–Koniarek D., Orłowski E., Mielcarek W., Sikora A.: Raport z badań IEL OW Nr 068/2007, "Badania porównawcze segmentów generatorowych (ciętych wykrojnikiem, laserem w atmosferze azotu, laserem w atmosferze powietrza) pod kątem właściwości magnetycznych oraz rezystancji w obszarze styku – żłobek/pręt generat. 2007.
♦ Moroń L., Adamowska M., Łatka R., Paściak G., Sikora A., Topolski M., Warycha J., Zawadzka E., Zych B.: Raport Końcowy projektu badawczo–rozwojowego Nr R01 025 02, "Nowa generacja kompozytów elektroizolacyjnych o zwiększonej powierzchni interfazy matryca–wypełniacz do zastosowań w technice wysokich napięć.'' 2009.
♦ Sikora A.: Raport końcowy realizacji projektu badawczego MNSiW nr N N505 466338 ''Zaawansowane pomiary parametrów materiałowych struktur w mikro– i nano– skali z wykorzystaniem szerokowidmowego przetwarzania i analizy wygięcia belki skanującej w trybie dynamicznym.'' 2011.
♦ Sikora A., Adamowska M., Wałecki M., Kryla P., Bednarz Ł.: Dokumentacja techniczna IEL OW nr 500–033400–026 ''Badania właściwości termicznych materiałów elektrotechnicznych.'', 2011.
♦ Moroń L., Zawadzka E., Zych B., Sikora A., Mielcarek W., Warycha J.: Raport półroczny projektu realizowanego w ramach przedsięwzięcia IniTech nr ZPB/31/72427/IT2/10, ''Komercjalizacja technologii wytwarzania i stosowania nanokompozytów polimerowych na osnowie poliolefin.'', 2011.
♦ Iwan A.: Zadanie badawcze nr 9 pt.''Nanomateriały wytwarzane technologią zol–żel przeznaczone do zastosowań medycznych i czujnikowych'' (01.2010– 07.2014) wykonywane w ramach programu badawczego ''Wykorzystanie nanotechnologii w nowoczesnych materiałach'' – NanoMat (nr projektu POIG 01.01.02–02–002/08) finansowanego ze środków UE w ramach Programu Operacyjnego Innowacyjna Gospodarka. Projekt realizowany jest z funduszy strukturalnych Wrocławskiego Centrum Badań EIT+ w IEL we Wrocławiu w konsorcjum z Instytutem Niskich Temperatur i Badań Strukturalnych PAN, Wrocław.
♦ Iwan A.: Projekt międzynarodowy niewspółfinansowany nr DPN/N20/POLONIUM2010 (Fotoprzewodzące smektyki typu n i dyskowe, ciekłokrystaliczne półprzewodniki organiczne dla samoorganizujących, donoro–akceptorowych organicznych ogniw słonecznych) (06.2010–04.2011) realizowanego w IEL we Wrocławiu.
♦ Sikora A., Olgierd U., Rodak A.: Sposób redukcji artefaktów w wynikach bliskiego pola i układ do redukcji artefaktów w wynikach pomiarowych mikroskopii bliskiego pola. zgloszenie patentowe nr. P.396059, 2011.
♦ Sikora A.: Sposób dynamicznej kontroli prędkości skanowania w mikroskopie sił atomowych i urządzenie do predykcji dynamicznej kontroli prędkości skanowania w mikroskopie sił atomowych. zgłoszenie patentowe nr P.397477, 2011.
♦ Sikora A., Bednarz Ł.: Sposób pomiaru właściwości termicznych powierzchni w skaningowej mikroskopii termicznej i układ do pomiaru właściwości termicznych powierzchni w skaningowej mikroskopii termicznej. 2012.
♦ Chung J., Munz M., Sturm H.: Stiffness variation in the interphase of amine–cured epoxy adjacent to copper microstructures. Surf. Interface Anal., (May), pp. 624–633, 2007.
♦ Martínez–Martínez D., Kołodziejczyk L., Sánchez–López J.C.C., Fernández a.: Tribological carbon–based coatings: An AFM and LFM study. Surface Science, 603 (7), pp. 973–979, 2009.
♦ Douhéret O., Swinnen a., Breselge M., Van Severen I., Lutsen L., Vanderzande D., Manca J.: High resolution electrical characterisation of organic photovoltaic blends. Microelectronic Engineering, 84 (3), pp. 431–436, 2007.
♦ Pingree L.S.C., Reid O.G., Ginger D.S.: Electrical Scanning Probe Microscopy on Active Organic Electronic Devices. Advanced Materials, 21 (1), pp. 19–28, 2009.
♦ Szmaja W., Grobelny J., Cichomski M.: MFM Investigation of the Domain Structure of Cobalt Single Crystals. Czechoslovak Journal of Physics, 54 (S4), pp. 249–252, 2004.
♦ Wawro A., Sobańska M., Petroutchik a, Baczewski L.T., Pankowski P.: Self–assembled growth of Au islands on a Mo(110) surface. Nanotechnology, 21 (33), p. 335606, 2010.
♦ Yang X.–bo, Okawa Y., Okumura Y.: MFM observation of a track–edge over–write pattern in a CoCrTdCr anisotropic medium. 221, pp. 221–223, 1995.
♦ Fiege G.B.M., Feige V., Phang J.C.H., Maywald M., Gtrlich S., Balk L.J.: Failure analysis of integrated devices by Scanning Thermal Microscopy ( SThM). Microelectronics Reliability, 38, pp. 957–961, 1998.
♦ Gomes S., David L., Lysenko V., Descamps a, Nychyporuk T., Raynaud M.: Application of scanning thermal microscopy for thermal conductivity measurements on meso–porous silicon thin films. Journal of Physics D: Applied Physics, 40 (21), pp. 6677–6683, 2007.
♦ Oesterschulze E., Stopka M., Ackermann L., Scholz W., Werner S.: Thermal imaging of thin films by scanning thermal microscope. Journal of Vacuum, 14 (July 1995), pp. 832–837, 1996.
♦ Durig U., Pohl D.W.W., Rohner F.: Near–field optical–scanning microscopy. Journal of App, 59 (10), pp. 3318–3327, 1986.
♦ Fischer U.C., Du¨rig U.T., Pohl D.W.: Near–field optical scanning microscopy in reflection. Applied Physics Letters, 52 (4), pp. 249–251, 1986.
♦ Giessibl F.J.: Forces and frequency shifts in atomic–resolution dynamic–force microscopy. Physical Review B, 56 (24), pp. 10–15, 1997.
♦ Albrecht T.R., Quate C.F.: Atomic resolution imaging of a nonconductor by atomic force microscopy. Journal of Applied Physics, 62 (7), p. 2599, 1987.
♦ Binnig G., Gerber C., Stoll E., Albrecht T.R., Quate C.F.: Atomic Resolution with Atomic Force Microscope. Europhysics Letters (EPL), 3 (12), pp. 1281–1286, 1987.
♦ Wolter O., Manufacturing G.: Micromachined silicon sensors for scanning force microscopy. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 9 (2), p. 1353, 1991.
♦ Bhushan B.: Springer Handbook of Nanotechnology, ISBN 978–3–642–02524–2, Springer, 2010.
♦ Sieradzka K., Kaczmarek D., Domaradzki J., Prociów E., Mazur M., Górnicka B.: Optical and electrical properties of nanocrystalline TiO2:Pd semiconducting oxides. Central European Journal of Physics, 9 (2), pp. 313–318, 2010.
♦ Rastegar A., Skarabot M., Blij B., Rasing T.: Mechanism of liquid crystal alignment on submicron patterned surfaces. Journal of Applied Physics, 89 (2), p. 960, 2001.
♦ Oetelaar L.C.A.V.D., Oetelaar R.J.A.V.D., Partridge A., Flipse C.F.J.: Reaction of nanometer–sized Cu particles with a SiO 2 substrate. Applied Physics Letters, 74 (20), pp. 2954–2956, 1999.
♦ Wawro A., Suto S., Czajka R., Kasuya A.: The solid state reaction of Fe with the Si(111) vicinal surface: splitting of bunched steps. Nanotechnology, 19 (20), p. 205706, 2008.
♦ Bozec L., de Groot J., Odlyha M., Nicholls B., Nesbitt S., Flanagan A., Horton M.: Atomic force microscopy of collagen structure in bone and dentine revealed by osteoclastic resorption. Ultramicroscopy, 105 (1)-(4), pp. 79–89, 2005.
♦ Dąbrowska A., Lebed K., Lekka M., Lekki J., Kwiatek W.M.: A comparison between the unfolding of fibronectin and contactin. Journal of Physics: Condensed Matter, 18 (45), pp. 10157–10164, 2006.
♦ Henning A.K., Hochwitz T.: Scanning probe microscopy for 2–D semiconductor dopant profiling and device failure analysis. Materials Science and Engineering: B, 42 (1)-(3), pp. 88–98, 1996.
♦ Bohm C., Saurenbach F., Taschner P., Roths C., Kubalek E.: Voltage contrast in integrated circuits with 100 nm spatial resolution by scanning force microscopy. Journal of Physics D:, 26, pp. 1801–1805, 1993.
♦ Leveque G., Girard P., Skouri E., Yarekha D.: Measurements of electric potential in a laser diode by Kelvin Probe Force Microscopy. Applied Surface Science, pp. 6–8, 2000.
♦ Strasser S., Zink A., Kada G., Hinterdorfer P., Peschel O., Heckl W.M., Nerlich A.G., Thalhammer S.: Age determination of blood spots in forensic medicine by force spectroscopy. Forensic science international, 170 (1), pp. 8–14, 2007.
♦ Kasas S., Khanmy–Vital a, Dietler G.: Examination of line crossings by atomic force microscopy. Forensic science international, 119 (3), pp. 290–8, 2001.
♦ Jarvis S.P., Yamamoto S.: Tip–surface interactions studied using a force controlled atomic force microscope in ultrahigh vacuum. Physics, 70 (April), pp. 2238–2240, 1997.
♦ Allers W., Schwarz a., Schwarz U.D., Wiesendanger R.: A scanning force microscope with atomic resolution in ultrahigh vacuum and at low temperatures. Review of Scientific Instruments, 69 (1), p. 221, 1998.
♦ Radlein E., Ambos R., Frischat G.H.: Atomic force microscopy of coated glasses. Journal of Analytical Chemistry, 353, pp. 413–418, 1995.
♦ Lesko S., Lesniewska E., Nonat a, Mutin J.C., Goudonnet J.P.: Investigation by atomic force microscopy of forces at the origin of cement cohesion. Ultramicroscopy, 86 (1)–(2), pp. 11–21, 2001.
♦ Giles R., Cleveland J.P., Manne S., Hansma P.K., Drake B., Maivald P., Boles C., Gurley J., Elings V.: Noncontact force microscopy in liquids. Applied physics letters, 63 (5), pp. 617–618, 1993.
♦ Hansma P.K., Cleveland J.P., Radmacher M., Walters D. a., Hillner P.E., Bezanilla M., Fritz M., Vie D., Hansma H.G., Prater C.B., Massie J., Fukunaga L., Gurley J., Elings V.: Tapping mode atomic force microscopy in liquids. Applied Physics Letters, 64 (13), p. 1738, 1994.
♦ Kazantsev D.V.: A simple scanning head for scanning near–field optical microscope. Ultramicroscopy, 71 (1), pp. 191–198, 1998.
♦ Olthoff S., McKinnon A.W., Welland M.E.: Thermal desorption of Na from: in situ observation of the 3 × 1–to–7 × 7 structural transformation using a high–temperature scanning tunnelling microscope. Surface Science, 326 (1)-(2), pp. 113–123, 1995.
♦ Price D.M., Reading M., Smith R.: Localized evolved gas analysis using a scanning thermal microscope. Proceedings of the twenty–eigth conference of the north american thermal analysis society, October 4–6, 2000, Orlando, Florida, pp. 705–709, 2000.
♦ Yacoot A., Koenders L.: Recent developments in dimensional nanometrology using AFMs. Measurement Science and Technology, 22 (12), p. 122001, Dec. 2011.
♦ Dziomba T., Koenders L., Wilkening G.: Standardization in dimensional nanometrology: development of a calibration guideline for Scanning Probe Microscopy. Proceedings of SPIE, 5965 (12), pp. 1–12, 2005.
♦ Dziomba T., Koenders L., Wilkening G.: Towards a Guideline for SPM Calibration. Nanoscale Calibration Standards and Methods, 2006.
♦ Jaafar M., Go J., Gómez–Herrero J., Gil a, Ares P., Vázquez M., Asenjo a: Variable–field magnetic force microscopy. Ultramicroscopy, 109 (6), pp. 693–9, 2009.
♦ Melo L.V.V., Brogueira P.: Magnetic dynamic behavior of nanomagnets studied by Magnetic Force Microscopy with external field. Materials Science and Engineering: C, 23 (6)-(8), pp. 935–938, 2003.
♦ Baselt D.R., Baldeschwieler J.D.: Scanned–cantilever atomic force microscope. Review of scientific instruments, 64 (4), pp. 908–911, 1993.
♦ strona internetowa firmy Nanosurf http://www.nanosurf.com. 2012.
♦ Scott J., McVitie S., Ferrier R.P., Gallagher A.: Electrostatic charging artefacts in Lorentz electron tomography of MFM tip stray. Journal of Physics D: Applied Physics, 34 (June), pp. 1326–1332, 2001.
♦ Doris B.B., Hegde R.I.: Improved atomic force microscopy imaging using carbon–coated probe tips. Applied Physics Letters, 67 (25), p. 3816, 1995.
♦ Lekka M., Wiltowska–Zuber J.: Biomedical applications of AFM. Journal of Physics: Conference Series, 146, p. 12023, 2009.
♦ Baker S.P.: Between nanoindentation and scanning force microscopy: measuring mechanical properties in the nanometer regime. Thin Solid Films, 308–309, pp. 289-296, 1997.
♦ Such B., Krok F., Szymoński M.: AFM tip–induced ripple pattern on AIII–BV semiconductor surfaces. Applied Surface Science, 254 (17), pp. 5431–5434, 2008.
♦ Ramiączek–Krasowska M., Szyszka A., Prazmowska J., Paszkiewicz R., Tłaczała M., Prażmowska J., Tłaczała M.: Application of nanoscratching in electronic devices. Optica Applicata, XXXIX (4), pp. 711–716, 2009.
♦ Farkas N., Tokash J.C., Zhang G., Evans E. a., Ramsier R.D., Dagata J. a.: Local oxidation of metal and metal nitride films. J. Vac. Sci. Technol, 22 (4), pp. 1879–1884, 2004.
♦ Chien F.S.–S., Hsieh W.–F., Gwo S., Vladar a. E., Dagata J. a.: Silicon nanostructures fabricated by scanning probe oxidation and tetra–methyl ammonium hydroxide etching. Journal of Applied Physics, 91 (12), pp. 10044–10050, 2002.
♦ Masubuchi S., Ono M., Yoshida K., Hirakawa K., Machida T.: Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope. Applied Physics Letters, 94 (8), p. 82107, 2009.
♦ Pollock H.M., Hammiche A.: Micro–thermal analysis: techniques and applications. J. Phys. D: Appl. Phys., 34, pp. 23–53, 2001.
♦ Manalis S.R., Minne S.C., Quate C.F.: Atomic force microscopy for high speed imaging using cantilevers with an integrated actuator and sensor. Engineering, 68, pp. 1995–1997, 1996.
♦ Minne S.C., Adams J.D., Yaralioglu G., Manalis S.R., Atalar A., Quate C.F.: Centimeter scale atomic force microscope imaging and lithography. Applied Physics Letters, 73 (12), pp. 1742–1744, 1998.
♦ Rangelow I.W., Ivanov T., Ivanova K., Volland B.E., Grabiec P., Sarov Y., Persaud a., Gotszalk T., Zawierucha P., Zielony M., Dontzov D., Schmidt B., Zier M., Nikolov N., Kostic I., Engl W., Sulzbach T., Mielczarski J., Kolb S., Latimier D.P., Pedreau R., Djakov V., Huq S.E., Edinger K., Fortagne O., Almansa a., Blom H.O.: Piezoresistive and self–actuated 128–cantilever arrays for nanotechnology applications. Microelectronic Engineering, 84 (5)-(8), pp. 1260–1264, 2007.
♦ Humphris A.D.L., Hobbs J.K., Miles M.J.: Ultrahigh–speed scanning near–field optical microscopy capable of over 100 frames per second. Applied Physics Letters, 83 (1), p. 6, 2003.
♦ Su C., Huang L., Kjoller K., Babcock K.: Studies of tip wear processes in tapping modet atomic force microscopy. Ultramicroscopy, 97, pp. 135–144, 2003.
♦ Khurshudov A.G., Kato K., Koide H.: Wear of the AFM diamond tip sliding against silicon. Wear, 203-204, pp. 22–27, 1997.
♦ Pittenger B., Erina N., Su C., Force P.: Quantitative mechanical property mapping at the nanoscale with PeakForce QNM. Application Note Veeco Instruments Inc, 2010.
♦ strona WWW firmy National Instruments: http://www.ni.com/pxi/. 2012.
♦ Binnig G.K., Rohrer H.: Scanning tunneling microscopy. Helvetica Physica Acta, 55, pp. 726–735, 1982.
♦ Binnig G., Rohrer H., Gerber C.: Surface studies by scanning tunneling microscopy. Physical Review Letters, 49 (1), pp. 57–61, 1982.
♦ Hertz H.: Über die berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik, 92, p. 156, 1896.
♦ Derjaguin B.V., Muller V.M., Toporov Y.U.P.: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci., 53, pp. 314–326, 1975.
♦ Boer–Duchemin E., Tranvouez E., Dujardin G.: The interaction of an atomic force microscope tip with a nano–object: a model for determining the lateral force. Nanotechnology, 21 (45), p. 455704, 2010.
♦ Schön P., Dutta S., Shirazi M., Noordermeer J., Julius Vancso G.: Quantitative mapping of surface elastic moduli in silica–reinforced rubbers and rubber blends across the length scales by AFM. Journal of Materials Science, 46 (10), pp. 3507–3516, 2011.
♦ Greenwood J.A., Johnson K.L.: Mechanics of adhesion of viscoelastic solids. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 43 (3), pp. 697–711, 1981.
♦ Spatz J.P., Sheiko S., Moller M., Winkler R.G., Reineker P., Marti O.: Forces affecting the substrate in resonant tapping force microscopy. Nanotechnology, 6, p. 40, 1995.
♦ Bhushan B., Marti O.: Scanning Probe Microscopy - Principle of Operation, Instrumentation, and Probes. Springer Handbook of Nanotechnology, pp. 573– 617, 2010.
♦ Boisen A., Hansen O., Bouwstra S.: AFM probes with directly fabricated tips. Journal of Micromechanics and Microengineering, 6, pp. 58–62, 1996.
♦ Shevyakov V., Lemeshko S., Roschin V.: Conductive SPM probes of base Ti or W refractory compounds. Nanotechnology, 9, pp. 352–355, 1998.
♦ Zhang Y.Y., Sriram T.S., Marcus R.B.: Formation of single tips of oxidation–sharpened Si. Technology, 69 (December), pp. 4260–4261, 1996.
♦ Menozzi C., Carlo Gazzadi G., Alessandrini A., Facci P.: Focused ion beam–nanomachined probes for improved electric force microscopy. Ultramicroscopy, 104 (3)-(4), pp. 220–5, 2005.
♦ Veerman J. a., Otter a. M., Kuipers L., van Hulst N.F., Hulst N.F.V.: High definition aperture probes for near–field optical microscopy fabricated by focused ion beam milling. Applied Physics Letters, 72 (24), pp. 3115–3117, 1998.
♦ Krogmeier J.R., Dunn R.C.: Focused ion beam modification of atomic force microscopy tips for near–field scanning optical microscopy. Applied Physics Letters, 79 (27), p. 4494, 2001.
♦ Givargizov E.I., Stepanova A.N., Mashkova E.S., Molchanov V.A., Shi F., Hudek P., Rangelow I.W.: Ultrasharp diamond–coated silicon tips for scanning–probe devices. Microelectronic Engineering, 41/42, pp. 499–502, 1998.
♦ Unno K., Shibata T., Makino E.: Micromachining of diamond probes for atomic force microscopy applications. Sensors and Actuators A: Physical, 88 (3), pp. 247–255, 2001.
♦ Stevens R.M.D., Frederick N.A., Smith B.L., Morse D.E., Stucky G.D., Hansma P.K.: Carbon nanotubes as probes for atomic force microscopy. Nature, 11, pp. 1–5, 2000.
♦ Moloni K., Lal A., Lagally M.G.: Sharpened carbon nanotube probes. Proceedings of SPIE, 4098, p. 76, 2000.
♦ Nishijima H., Kamo S., Akita S., Nakayama Y.: Carbon–nanotube tips for scanning probe microscopy: Preparation by a controlled process and observation of deoxyribonucleic acid. Applied Physics Letters, 74 (26), pp. 4061–4063, 1999.
♦ Giessibl F.J., Hembacher S., Bielefeldt H., Mannhart J.: Subatomic Features on the Silicon (111)–(7x7) Surface Observed by Atomic Force Microscopy. Science, 289, pp. 422–425, 2000.
♦ http://www.microstartech.com/. 2012.
♦ Matyka K., Matyka M., Mróz I., Zalewska–Rejdak J., Ciszewski A.: An AFM study on mechanical properties of native and dimethyl suberimidate cross–linked pericardium tissue. Journal of molecular recognition, 20 (6), pp. 524–530, 2007.
♦ Dongmo S., Vautrot P., Bonnet N., Troyon M.: Correction of surface roughness measurements in SPM imaging. Applied Physics A: Materials Science & Processing, 66, pp. 819–823, 1998.
♦ Givargizov E.I., Stepanova A.N., Obolenskaya L.N., Mashkova E.S., Molchanov V.A., Givargizov M.E., Rangelow I.W.: Whisker probes. Science, 82, pp. 57–61, 2000.
♦ Cho S.–joon, Ahn B.–woon, Kim J., Lee J.–min, Hua Y., Yoo Y.K., Park S.–il: Three–dimensional imaging of undercut and sidewall structures by atomic force microscopy. The Review of scientific instruments, 82 (2), p. 023707, 2011.
♦ Dai G., Wolff H., Weimann T., Xu M., Pohlenz F., Danzebrink H.–U.: Nanoscale surface measurements at sidewalls of nano– and micro–structures. Measurement Science and Technology, 18 (2), pp. 334–341, 2007.
♦ Dai G., Häßler–Grohne W., Hüser D., Wolff H., Danzebrink H.–U.U., Koenders L., Bosse H.: Development of a 3D–AFM for true 3D measurements of nanostructures. Measurement Science and Technology, 22 (9), p. 094009, 2011.
♦ Villarrubia J.S.: Scanned probe microscope tip characterization without calibrated tip characterizers. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 14 (2), p. 1518, 1996.
♦ Tian F., Qian X., Villarrubia J.S.: Blind estimation of general tip shape in AFM imaging. Ultramicroscopy, 109 (1), pp. 44–53, 2008.
♦ Jóźwiak G., Henrykowski A., Masalska A., Gotszalk T., Ritz I., Steigmann H.: The regularized blind tip reconstruction algorithm as a scanning probe microscopy tip metrology method. arXiv:1105.1472, 2011.
♦ Dongmo L.S., Villarrubia J.S., Jones S.N., Renegar T.B., Postek M.T., Song J.F.: Experimental test of blind tip reconstruction for scanning probe microscopy. Science, 85, pp. 141–153, 2000.
♦ Sheiko S., Moller M., Reuvekamp E., Zandbergen H.: Evaluation of the probing profile of scanning force microscopy tips. Ultramicroscopy, 53 (4), pp. 371-380, 1994.
♦ Chen Y., Cai J., Liu M., Zeng G., Feng Q., Chen Z.: Research on double–probe, double– and triple–tip effects during atomic force microscopy scanning. Scanning, 26 (4), pp. 155–61, 2004.
♦ Jahncke C.L., Hallen H.D., Paesler M.A.: Nano–Raman Spectroscopy and Imaging with the Near–field Scanning Optical Microscope. J. Raman Spectroscopy, 27, pp. 579–586, 1996.
♦ Whitby J. a., Östlund F., Horvath P., Gabureac M., Riesterer J.L., Utke I., Hohl M., Sedláček L., Jiruše J., Friedli V., Bechelany M., Michler J.: High Spatial Resolution Time–of–Flight Secondary Ion Mass Spectrometry for the Masses: A Novel Orthogonal ToF FIB–SIMS Instrument with In Situ AFM. Advances in Materials Science and Engineering, 2012, pp. 1–13, 2012.
♦ Jobin M., Du A., Foschia R.: Integrated optical profiler and AFM: a 3D metrolog system for nanotechnology. NSTI–Nanotech 2005, 2, pp. 695–697, 2005.
♦ Efimov A.E., Tonevitsky A.G., Dittrich M., Matsko N.B.: Atomic force microscope (AFM) combined with the ultramicrotome: a novel device for the serial section tomography and AFM/TEM complementary structural analysis of biological and polymer samples. Journal of microscopy, 226, pp. 207–217, 2007.
♦ Gotszalk T.: Systemy mikroskopii bliskich oddziaływań w badaniach mikro– i nanostruktur. 2004.
♦ Ptak A., Gojżewski H., Kappl M., Butt H.–J.: Influence of humidity on the nanoadhesion between a hydrophobic and a hydrophilic surface. Chemical Physics Letters, 503 (1)-(3), pp. 66–70, 2011.
♦ Ookubo N., Yumoto S.: Rapid surface topography using a tapping mode atomic force microscope. Applied Physics Letters, 74 (15), pp. 2149–2151, 1999.
♦ Fujimoto H., Ooshima T.: Patent europejski EP 2 131 180 A1. pp. 1–142, 2008.
♦ Göddenhenrich T., Lemke H., Hartmann U., Heiden C.: Force microscope with capacitive displacement detection. J. Vac. Sci. Technol. A, 8, pp. 383–387, 1990.
♦ Chu J., Itoh T., Lee C., Suga T., Watanabe K.: Novel high vacuum scanning force microscope using a piezoelectric cantilever and the phase detection method. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 15 (4), pp. 1551–1555, 1997.
♦ Gotszalk T., Grabiec P.B., Rangelow I.W.: A novel piezoresistive microprobe for atomic and lateral force microscopy. Sensors and Actuators A: Physical, 123-124, pp. 370–378, Sep. 2005.
♦ Rugar D., Mamin H.J.J., Guethner P.: Improved fiber–optic interferometer for atomic force microscopy. Applied Physics Letters, 55 (25), pp. 2588–2590, 1989.
♦ Meyer G., Amer N.M.: Novel optical approach to atomic force microscopy. Applied Physics Letters, 53 (12), pp. 1045–1047, 1988.
♦ Strona WWW firmy Herzan http://www.herzan.com. 2012.
♦ Strona WWW firmy Vistek http://www.vistekinc.com. 2012.
♦ Strona WWW firmy Minus k technology http://www.minusk.com/. 2012.
♦ Roseman M., Grutter P.: Cryogenic magnetic force microscope. Review of Scientific Instruments, 71 (10), p. 3782, 2000.
♦ Base D.R., Clark S.M., Youngquist M.G., Spence C.F., Baldeschwieler J.D.: Digital signal processor control of scanned probe microscopes. Review of Scientific Instruments, 64 (7), pp. 1874–1882, 1993.
♦ Meyer E., Gu H.: Fuzzy controlled feedback applied to a combined scanning tunneling and force microscope. Scanning, 72 (January), pp. 141–143, 1998.
♦ Strube S., Molnar G., Danzebrink H.–U.: Compact field programmable gate array (FPGA)–based multi–axial interferometer for simultaneous tilt and distance measurement in the sub–nanometre range. Measurement Science and Technology, 22 (9), p. 94026, 2011.
♦ Nowacki Z., Zawierucha P., Serafińczuk J., Woszczyna M., Sawicki P., Michał Z., Szecówka P., Gotszalk T.: 32 – kanałowy cyfrowy regulator PID na bazie układu FPGA do zastosowań w mikroskopii sił atomowych. Elektronika, 51 (2), pp. 109–113, 2010.
♦ Schitter G., Menold P., Knapp H.F., Allgower F., Stemmer A.: High performance feedback for fast scanning atomic force microscopes. Review of Scientific Instruments, 72 (8), p. 3320, 2001.
♦ Carberry D.M., Picco L., Dunton P.G., Miles M.J.: Mapping real–time images of high–speed AFM using multitouch control. Nanotechnology, 20 (43), p. 434018, 2009.
♦ Chow E.M., Yaralioglu G.G., Quate C.F., Kenny T.W.: Characterization of a two–dimensional cantilever array with through–wafer electrical interconnects. Applied Physics Letters, 80 (4), pp. 664–666, 2002
♦ ScanAsyst Exclusive Self–Optimizing AFM Imaging Mode. Bruker Corporation product specification, B071 (B0), 2010.
♦ Orange S., Products I.S., McMullen R.L., Kelty S.P.: Investigation of human hair fibers using lateral force microscopy. Scanning, 23 (5), pp. 337–45, 2001.
♦ Ono M., Lange D., Brand O., Hagleitner C., Baltes H.: A complementary–metal–oxide–semiconductor–field–effect–transistor–compatible atomic force microscopy tip fabrication process and integrated atomic force microscopy cantilevers fabricated with this process. Ultramicroscopy, 91 (1)–(4), pp. 9–20, 2002.
♦ Horcas I., Fernández R., Gómez–Rodríguez J.M., Colchero J., Gómez–Herrero J., Baro a M.: WSXM: a software for scanning probe microscopy and a tool for nanotechnology. The Review of scientific instruments, 78 (1), p. 13705, 2007.
♦ Nečas D., Klapetek P.: Gwyddion: an open–source software for SPM data analysis. Central European Journal of Physics, 10 (1), pp. 181–188, 2011.
♦ Jóźwiak G., Woszczyna M., Serafińczuk J., Zawierucha P., Zielony M., Piasecki T., Gotszalk T., Szeloch R.: Topograf – program do przetwarzania i analizy obrazów uzyskiwanych z mikroskopów SPM. Komputerowe wspomaganie badań naukowych XV, pp. 27–32, 2008.
♦ Klapetek P., Nečas D., Anderson C.: Gwyddion user guide: http://gwyddion.net/. 2009.
♦ Vincent O. R. F.O.: A Descriptive Algorithm for Sobel Image Edge Detection. Proceedings of Informing Science & IT Education Conference (InSITE) 2009, pp. 97–107, 2009.
♦ Sobel edge enhancement filter http://www.imagemet.com/index.php?main=products&sub=features&id=120. 2012.
♦ Solares S.D., Chawla G.: Frequency response of higher cantilever eigenmodes in bimodal and trimodal tapping mode atomic force microscopy. Measurement Science and Technology, 21 (12), p. 125502, 2010.
♦ Rodriguez B.J., Jesse S., Seal K., Balke N., Kalinin S.V., Proksch R.: Dynamic and Spectroscopic Modes and Multivariate Data Analysis in Piezoresponse Force Microscopy. Scanning Probe Microscopy of Functional Materials: Nanoscale Imaging and Spectroscopy, pp. 491–528, 2010.
♦ Ferrante J., Smith J.R.: Theory of metallic adhesion. Physical Review B, 19 (8), p. 3911, 1979.
♦ Garcia R., Perez R.: Dynamic atomic force microscopy methods. Surf. Sci. Rep., 47, pp. 197–301, 2002.
♦ Gauthier M., Tsukada M.: Damping mechanism in dynamic force microscopy. Physical review letters, 85 (25), pp. 5348–5351, 2000.
♦ Nemesincze P., Osvath Z., Kamaras K., Biro L.: Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon, 46 (11), pp. 1435–1442, 2008.
♦ Giessibl F.J., Tortonese M.: Self–oscillating mode for frequency modulation noncontact atomic force microscopy. Applied physics letters, 70 (19), pp. 2529–2531, 1997.
♦ Halliday D., Resnick R., Walker J.: Podstawy fizyki. ISBN: 978–83–01–14107–3, Wydawnictwo Naukowe PWN, 2012.
♦ Euler R., Memmert U., Hartmann U.: Fiber interferometer–based variable temperature scanning force microscope. Review of scientific instruments, 68 (4), p. 1776, 1997.
♦ Dukhopel I.I.: Interference and interferometry. Journal of Optical Technology, 66 (3), pp. 268–282, 1999.
♦ Minne S.C., Manalis S.R., Quate C.F.: Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators. Control, 67, pp. 3918–3920, 1995.
♦ Pędrak R., Ivanov T., Ivanova K., Gotszalk T., Abedinov N., Rangelow I.W., Edinger K., Tomerov E., Schenkel T., Hudek P., Introduction I.: Micromachined atomic force microscopy sensor with integrated piezoresistive sensor and thermal bimorph actuator for high–speed tapping–mode atomic force microscopy phase–imaging in higher eigenmodes. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 21 (6), p. 3102, 2003.
♦ Smolyaninov I.I., Atia W. a., Pilevar S., Davis C.C.: Experimental study of probe-surface interaction in near–field optical microscopy. Ultramicroscopy, 71 (1), pp. 177–182, 1998.
♦ Bugacov A., Resch R., Baur C., Montoya N., Woronowicz K., Papson A., Koel B.E., Requicha A., Will P.: Measuring the tip–sample separation in Dynamic Force Microscopy. Probe Microscopy, 1, pp. 345–354, 1999.
♦ Gleyzes P., Kuo P.K., Boccara a. C.: Bistable behavior of a vibrating tip near a solid surface. Applied Physics Letters, 58 (25), p. 2989, 1991.
♦ Stark R.W.: Bistability, higher harmonics, and chaos in AFM. Materials Today, 13 (9), pp. 24–32, 2010.
♦ Resch K., Wallner G.M.: Morphology of phase–separated thermotropic layers based on UV cured acrylate resins. Polymers for Advanced Technologies, 20 (12), pp. 1163–1167, 2009.
♦ Seo Y., Park J.H., Moon J.B., Jhe W.: Fast–scanning shear–force microscopy using a high–frequency dithering probe. Applied Physics Letters, 77 (26), pp. 4274–4276, 2000.
♦ Akiyama T., Staufer U., de Rooij N.F.: Fast driving technique for integrated thermal bimorph actuator toward high–throughput atomic–force microscopy. Review of Scientific Instruments, 73 (7), p. 2643, 2002.
♦ Albrecht T.R., Grtitter P., Horne D., Rugar D.: Frequency modulation detection using high–Q cantilevers for enhanced force microscope sensitivity. Journal of Applied Physics, 69 (2), pp. 668–673, 1991.
♦ Hölscher H., Hendrik H.: Q–controlled dynamic force spectroscopy. Surface Science, 515 (2)-(3), pp. 517–522, 2002.
♦ Friedbacher G., Fuchs H.: Classification of Scanning Probe Microscopies. Pure and Applied Chemistry, 71 (7), pp. 1337–1357, 1999.
♦ Honda Y., Hirayama Y., Ito K., Futamoto M.: Microscopic magnetization structures and noise in single–layer perpendicular thin film media. IEEE Transactions on Magnetics, 34 (4), pp. 1633–1635, 1998.
♦ Alliata D., Kötz R., Haas O., Siegenthaler H.: In Situ AFM Study of Interlayer Spacing during Anion Intercalation into HOPG in Aqueous Electrolyte. Langmuir, 15 (24), pp. 8483–8489, 1999.
♦ Wojcieszak D., Kaczmarek D., Domaradzki J., Prociów E.L., Morawski A.W., Janus M.: Photocatalytic properties of nanocrystalline TiO2 thin films doped with Tb. Central European Journal of Physics, 9 (2), pp. 354–359, 2010.
♦ SPIP online manual http://www.imagemet.com/WebHelp/spip.htm roughness. 2011.
♦ ISO 25178–2 Geometrical product specifications (GPS) –– Surface texture: Areal –– Part 2: Terms, definitions and surface texture parameters ( TC 213 Dimensional and geometrical product specifications and verification ISO Store ISO Standards By ICS By TC H. 2011.
♦ ASME B46.1 surface texture (surface roughness, waviness, and lay). 2002.
♦ Egan C.K., Dabrowski P., Klusek Z., Brinkman a. W.: A Scanning Probe Microscopy Study of Cd1–x Zn x Te. Journal of Electronic Materials, 38 (8), pp. 1528–1532, 2009.
♦ Barranco V., Onofre E., Escudero M.L., García–Alonso M.C.: Characterization of roughness and pitting corrosion of surfaces modified by blasting and thermal oxidation. Surface and Coatings Technology, 204 (23), pp. 3783–3793, 2010.
♦ Domaradzki J., Kaczmarek D., Borkowska A., Schmeisser D., Mueller S., Wasielewski R., Ciszewski A., Wojcieszak D.: Influence of annealing on the structure and stoichiometry of europium–doped titanium dioxide thin films. Vacuum, 82 (10), pp. 1007–1012, 2008.
♦ Alexandrova E.L., Ivanov a. G., Heller N.M., Nadezhdina L.B., Shamanin V.V.: Photosensitive properties of metal–containing polydisalicylidene azomethines. Semiconductors, 42 (11), pp. 1338–1341, 2009.
♦ Suresh B., Maruthamuthu S., Khare A., Palanisamy N., Muralidharan V.S., Ragunathan R., Kannan M., Pandiyaraj K.N.: Influence of thermal oxidation on surface and thermo–mechanical properties of polyethylene. Journal of Polymer Research, 18 (6), pp. 2175–2184, 2011.
♦ Nowicki M., Richter A., Wolf B., Kaczmarek H.: Nanoscale mechanical properties of polymers irradiated by UV. Polymer, 44 (21), pp. 6599–6606, 2003.
♦ Canetta E., Montiel K., Adya A.K.: Morphological changes in textile fibres exposed to environmental stresses: atomic force microscopic examination. Forensic science international, 191 (1)-(3), pp. 6–14, 2009.
♦ Robertson C., Wertheimer M., Fournier D., Lamarre L.: Study on the morphology of XLPE power cable by means of atomic force microscopy. IEEE Transactions on Dielectrics and Electrical Insulation, 3 (2), pp. 283–288, 1996.
♦ PN–EN 60068–2–5:2011, Badania środowiskowe – Część 2–5: Próby – Próba Sa: Symulowane promieniowanie słoneczne występujące na powierzchni ziemi oraz wytyczne dotyczące badania promieniowania słonecznego.
♦ PN–EN ISO 4892–2:2009, Tworzywa sztuczne – Metody ekspozycji na laboratoryjne źródła światła – Część 2: Lampy ksenonowe łukowe.
♦ PN–EN ISO 14125:2001 Kompozyty tworzywowe wzmocnione włóknem – Oznaczanie właściwości przy zginaniu.
♦ Butt H.–J., Cappella B., Kappl M.: Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 59 (1)-(6), pp. 1–152, 2005.
♦ Reynaud C., Sommer F., Quet C., Bounia N.E., Duc T.M., El Bounia N.: Quantitative determination of Young's modulus on a biphase polymer system using atomic force microscopy. Surf. Interface Anal., 189 (30), pp. 185–189, 2000.
♦ Vakarelski I.U., Toritani A., Nakayama M., Higashitani K.: Deformation and adhesion of elastomer microparticles evaluated by AFM. Langmuir, 17 (16), pp. 4739–4745, 2001.
♦ Zhang X., Liu C., Wang Z.: Force spectroscopy of polymers: Studying on intramolecular and intermolecular interactions in single molecular level. Polymer, 49 (16), pp. 3353–3361, 2008.
♦ Ptak A., Makowski M., Cichomski M.: Characterization of nanoscale adhesion between a fluoroalkyl silane monolayer and a silicon AFM tip. Complex character of the interaction potential. Chemical Physics Letters, 489 (1)-(3), pp. 54–58, 2010.
♦ Canetta E., Adya A.K.: Atomic force microscopic investigation of commercial pressure sensitive adhesives for forensic analysis. Forensic science international, 210 (1)-(3), pp. 16–25, Jul. 2011.
♦ http://www.ntmdt.com/press–releases/view/next–generation–of–afm–probes–etalon–series–best–price–best–quality. 2009.
♦ Sader J.E., Larson I., Mulvaney P., White L.R.: Method for the calibration of atomic force microscope cantilevers. Review of Scientific Instruments, 66 (7), p. 3789, 1995.
♦ Hutter J.L., Bechhoefer J.: Calibration of atomic–force microscope tips. Review of Scientific Instruments, 64 (7), p. 1868, 1993.
♦ Cleveland J.P., Manne S., Bocek D., Hansma P.K.: A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Review of Scientific Instruments, 64 (2), p. 403, 1993.
♦ Sader J.E., Chon J.W.M., Mulvaney P.: Calibration of rectangular atomic force microscope cantilevers. Review of Scientific Instruments, 70 (10), pp. 3967–3969, 1999.
♦ Levy R., Maaloum M.: Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods. Nanotechnology, 13, p. 33, 2002.
♦ Butt H.–J., Siedle P., Seifert K., Fendler K., Seeger T., Bamberg E., Weisenhorn A.L., Goldie K., Engel A.: Scan speed limit in atomic force microscopy. Journal of Microscopy, 169 (1), pp. 75–84, 1993.
♦ Clifford C.A., Seah M.P.: Improved methods and uncertainty analysis in the calibration of the spring constant of an atomic force microscope cantilever using static experimental methods. Measurement Science and Technology, 20 (12), p. 125501, 2009.
♦ Holbery J.D., Eden V.L.: A comparison of scanning microscopy cantilever force constants determined using a nanoindentation testing apparatus. Journal of Micromechanics and, 10 (2000), pp. 85–92, 2000.
♦ Ekwińska M., Rymuza Z.: Normal Force Calibration Method Used for Calibration of Atomic Force Microscope. 116, pp. 78–81, 2009.
♦ Strona WWW firmy Nanoidea http://www.nanoidea.pl/. 2012.
♦ Strzelecki J., Mikulska K., Lekka M., Kulik A., Balter A., Nowak W.: AFM Force Spectroscopy and Steered Molecular Dynamics Simulation of Protein Contactin 4. 116, pp. 156–159, 2009.
♦ Canale C., Jacono M., Diaspro a, Dante S.: Force spectroscopy as a tool to investigate the properties of supported lipid membranes. Microscopy research and technique, 73 (10), pp. 965–972, 2010.
♦ Ptak a., Kappl M., Butt H.–J.: Modified atomic force microscope for high–rate dynamic force spectroscopy. Applied Physics Letters, 88 (26), p. 263109, 2006.
♦ Wortman J.J., Evans R. a.: Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium. Journal of Applied Physics, 36 (1), p. 153, 1965.
♦ Hopcroft M.A., Nix W.D., Kenny T.W.: What is the Young's Modulus of Silicon? Journal of Microelectromechanical Systems, 19 (2), pp. 229–238, 2010.
♦ Zhou H., Mills G., Chong B.K., Midha a., Donaldson L., Weaver J.M.R.: Recent progress in the functionalization of atomic force microscope probes using electron–beam nanolithography. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 17 (4), p. 2233, 1999.
♦ Friedsam C., Del Campo Bécares A., Jonas U., Gaub H.E., Seitz M.: Polymer functionalized AFM tips for long–term measurements in single–molecule force spectroscopy. Chemphyschem: a European journal of chemical physics and physical chemistry, 5 (3), pp. 388–393, 2004.
♦ Chernoff D.: Proceedings of the Microscopy and Microanalysis. New York: Jones and Begell, 1995.
♦ Tamayo J., Garci´a R.: Effects of elastic and inelastic interactions on phase contrast images in tapping mode scanning force microscopy. Applied Physics Letters, 71, pp. 2394–2396, 1997.
♦ Chen X., Davies M.C., Roberts C.J., Tendler S.J.B., Williams P.M., Davies J., Dawkes a. C., Edwards J.C.: Interpretation of tapping mode atomic force microscopy data using amplitude–phase–distance measurements. Ultramicroscopy, 75 (3), pp. 171–181, 1998.
♦ Magonov S.N.S., Elings V., Whangbo M.–H.: Phase imaging and stiffness in tapping–mode atomic force microscopy. Surface Science, 375 (2)-(3), p. L385–L391, 1997.
♦ Whangbo M.–hwan, Bar G., Brandsch R.: Description of phase imaging in tapping mode atomic force microscopy by harmonic approximation. Surface Science, 411, p. L794–L801, 1998.
♦ Bar G., Brandsch R., Whangbo M.–H.: Description of the frequency dependence of the amplitude and phase angle of a silicon cantilever tapping on a silicon substrate by the harmonic approximation. Surface Science, 411 (1)-(2), p. L802–L809, 1998.
♦ Cleveland J.P., Anczykowski B., Schmid a. E., Elings V.B.: Energy dissipation in tapping–mode atomic force microscopy. Applied Physics Letters, 72 (20), pp. 2613–2615, 1998.
♦ Anczykowski B., Gotsmann B., Fuchs H., Cleveland J.P., Elings V.B.: How to measure energy dissipation in dynamic mode atomic force microscopy. Applied Surface Science, 140 (3)-(4), pp. 376–382, 1999.
♦ Maivald P., Butt H.J., Gould S.A.C., Prater C.B., Drake B., Gurley J.A., Elings V.B., Hansma P.K.: Using force modulation to image surface elasticities with the atomic force microscope. Nanotechnology, 2 (2), pp. 103–106, 1991.
♦ Radmacher M., Tillmann R.W., Gaub H.E.: Imaging viscoelasticity by force modulation with the atomic force microscope. Biophysical Journal, 64 (3), pp. 735–742, 1992.
♦ Force Modulation Microscopy (FMM) Force Amplitude and Phase Imaging of Sample Elasticity. Park Systems Mode Note, p. 103,
♦ strona WWW firmy Solec http://www.solec.org/solkotehome.htm. 2012.
♦ Morita S., Fujisawa S., Kishi E., Ohta M., Ueyama H., Sugawara Y.: Contact and non–contact mode imaging by atomic force microscopy. Thin Solid Films, 273 (1)-(2), pp. 138–142, 1996.
♦ Bhushan B., Koinkar V.N.: Macro and microtribological studies of CrO2 video tapes. Wear, 180 (1)-(2), pp. 9–16, 1995.
♦ Bhushan B.: Nanotribology and nanomechanics. Wear, 259 (7)-(12), pp. 1507–1531, 2005.
♦ Pidduck A.J., Smith G.C.: Scanning probe microscopy of automotice anti–wear films. Wear, 212, pp. 254–264, 1997.
♦ Tamayo J., García R.: Friction force microscopy characterization of semiconductor heterostructures. Materials Science and Engineering: B, 42 (1)-(3), pp. 122–126, 1996.
♦ Mate C.M., Mcclelland G.M., Erlandsson R., Chiang S.: Atomic–scale friction of a tungsten tip on a graphite surface. Physical Review Letters, 59 (17), pp. 1942–1946, 1987.
♦ Navarrini W., Bianchi C.L., Magagnin L., Nobili L., Carignano G., Metrangolo P., Resnati G., Sansotera M.: Low surface energy coatings covalently bonded on diamond–like carbon films. Diamond and Related Materials, 19 (4), pp. 336–341, 2010.
♦ Grunze M., Kreuzer H.J.: Adhesion and Friction, Springer Series in Surface Sciences, 1990.
♦ Schwarz U.D., Zwo O.: Consequences of the stick–slip movement for the scanning force microscopy imaging of graphite. Physical Review B, 57 (4), pp. 2477–2481, 1998.
♦ Chung K.–H., Pratt J.R., Reitsma M.G.: Lateral force calibration: accurate procedures for colloidal probe friction measurements in atomic force microscopy. Langmuir: the ACS journal of surfaces and colloids, 26 (2), pp. 1386–1394, 2010.
♦ Sul O., Jang S., Yang E.–H.: Step–edge calibration of torsional sensitivity for lateral force microscopy. Measurement Science and Technology, 20 (11), p. 115104, 2009.
♦ Masalska A., Zawierucha P., Woszczyna M., Gotszalk T., Ritz Y., Zschech E.: Skalowanie optycznego czujnika sił tarcia mikroskopu sił atomowych. Elektronika, 49 (6), pp. 69–71, 2008.
♦ Reitsma M.G., Gates R.S., Friedman L.H., Cook R.F.: Prototype cantilevers for quantitative lateral force microscopy. Review of Scientific Instruments, 82 (9), p. 093706, 2011.
♦ Méndez–Vilas a., González–Marti´n M.L.L., Labajos–Broncano L., Nuevo M.J.J.: Artifacts in AFM images revealed using friction maps. Applied Surface Science, 238 (1)-(4), pp. 42–46, 2004.
♦ Sahin O.: Harmonic Force Microscope: A new tool for biomolecular identification and characterization based on nanomechanical measurements. Ph.D. dissertation, Stanford University, 2005.
♦ Sahin O., Atalar A., Quate C.F., Solgaard O.: Harmonic cantilevers and imaging methods for atomic force microscopy. p. US Patent No. US6935167, 2005.
♦ Sahin O.: Harnessing bifurcations in tapping–mode atomic force microscopy to calibrate time–varying tip–sample force measurements. Review of Scientific Instruments, 78 (103707), pp. 1–4, 2007.
♦ Sahin O.: Time–varying tip–sample force measurements and steady–state dynamics in tapping–mode atomic force microscopy. Physical Review B, 77 (11), pp. 1–6, 2008.
♦ Ihalainen P., Järnström J., Määttänen A., Peltonen J.: Nano–scale mapping of mechanical and chemical surface properties of pigment coated surfaces by torsional harmonic atomic force microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 373 (1)-(3), pp. 138–144, 2011.
♦ Lanniel M., Lu B., Chen Y., Allen S., Buttery L., Williams P., Huq E., Alexander M.: Patterning the mechanical properties of hydrogen silsesquioxane films using electron beam irradiation for application in mechano cell guidance. Thin solid films, 519 (6), pp. 2003–2010, 2011.
♦ de Pablo P., Colchero J., Luna M., Gómez–Herrero J., Baró a.: Tip–sample interaction in tapping–mode scanning force microscopy. Physical Review B, 61 (20), pp. 14179–14183, 2000.
♦ Bednarz Ł.: ''Analiza poprzecznych skręceń belki skanującej w mikroskopii sił atomowych w celu oceny sił lepkości i sprężystości powierzchni próbki.'' praca magisterska. Wydział Elektroniki Mikrosystemów i Fotoniki, Politechnika Wrocławska, 2010.
♦ de Pablo P.J., Colchero J., Go´mez–Herrero J., Baro´ a. M., Pablo P.J.D., Gomez–Herrero J.: Jumping mode scanning force microscopy. Applied Physics Letters, 73 (22), pp. 3300–3302, 1998.
♦ Sahin O., Magonov S., Su C., Quate C.F., Solgaard O.: An atomic force microscope tip designed to measure time–varying nanomechanical forces. Nature Nanotechnology, 2 (8), pp. 507–514, 2007.
♦ Sahin O., Quate C.F., Solgaard O., Atalar A.: Resonant harmonic response in tapping–mode atomic force microscopy. Physical Review B, 69 (165416), pp. 1–9, 2004.
♦ Sahin O., Quate C.F., Solgaard O.: Torsional harmonic cantilevers for detection of high frequency force components in atomic force microscopy. US Patent No. US7089787, p. US Patent No. US7089787, 2006.
♦ Sahin O., Quate C.F., Solgaard O.: Atomic force microscope using a torsional harmonic cantilever. US Patent No. US7404314, p. US Patent No. US7404314, 2008.
♦ Sarioglu A.F., Solgaard O.: Cantilevers with integrated sensor for time–resolved force measurement in tapping–mode atomic force microscopy. Applied Physics Letters, 93 (2), p. 023114, 2008.
♦ strona WWW firmy Bruker – oferta sond AFM oraz akcesoriów http://www.brukerafmprobes.com. 2012.
♦ strona WWW firmy MikroMasch http://www.spmtips.com/. 2012.
♦ Stark M., Stark R.W., Heckl W.M., Guckenberger R.: Inverting dynamic force microscopy: From signals to time–resolved interaction forces. Proceedings of the National Academy of Sciences, 99 (13), pp. 8473–8478, 2002.
♦ Legleiter J., Park M., Cusick B., Kowalewski T.: Scanning probe acceleration microscopy (SPAM) in fluids: mapping mechanical properties of surfaces at the nanoscale. Proceedings of the National Academy of Sciences of the United States of America, 103 (13), pp. 4618–4813, 2006.
♦ HarmoniX User Guide. Veeco Instruments Inc. Santa USA, (doc. no 004)-(1024)–(000), 2008.
♦ Sahin O., Erina N.: High–resolution and large dynamic range nanomechanical mapping in tapping–mode atomic force microscopy. Nanotechnology, 19 (44), p. 445717, 2008.
♦ Novoselov K.S., Geim a K., Morozov S.V., Jiang D., Katsnelson M.I., Grigorieva I.V., Dubonos S.V., Firsov a a: Two–dimensional gas of massless Dirac fermions in graphene. Nature, 438 (7065), pp. 197–200, 2005.
♦ Geim A.K., Novoselov K.S.: The rise of graphene. Nature materials, 6 (3), pp. 183–91, 2007.
♦ Blake P., Hill E.W., Castro Neto a. H., Novoselov K.S., Jiang D., Yang R., Booth T.J., Geim A.K.: Making graphene visible. Applied Physics Letters, 91 (6), p. 063124, 2007.
♦ Balandin A. a, Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F., Lau C.N.: Superior thermal conductivity of single–layer graphene. Nano letters, 8 (3), pp. 902–907, 2008.
♦ Bae S., Kim H., Lee Y., Xu X., Park J.–S., Zheng Y., Balakrishnan J., Lei T., Kim H.R., Song Y.I., Kim Y.–J., Kim K.S., Ozyilmaz B., Ahn J.–H., Hong B.H., Iijima S.: Roll–to–roll production of 30–inch graphene films for transparent electrodes. Nature nanotechnology, 5 (8), pp. 574–8, 2010.
♦ Shah P.B.B., Lettow J., Nyguen C., Derenge M. a. A., Jones K. a. A., Batyrev I., Piekarski B.: Graphene containing conductive inks for electrical contacts to power semiconductor devices. Semiconductor Device Research Symposium, 2009. ISDRS'09. International, pp. 1–2, 2009.
♦ Woszczyna M., Friedemann M., Dziomba T., Weimann T., Ahlers F.J.: Graphene p–n junction arrays as quantum–Hall resistance standards. Applied Physics Letters, 99 (2), p. 22112, 2011.
♦ Frank I.W., Tanenbaum D.M., van der Zande a. M., McEuen P.L.: Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 25 (6), p. 2558, 2007.
♦ Jiang J.–wu, Wang J.–sheng, Li B.: Young's modulus of Graphene: a molecular dynamics study. Science, pp. 1–4, 2009.
♦ Pandey D., Reifenberger R., Piner R.: Scanning probe microscopy study of exfoliated oxidized graphene sheets. Surface Science, 602 (9), pp. 1607–1613, 2008.
♦ Burnett T., Yakimova R., Kazakova O.: Mapping of local electrical properties in epitaxial graphene using electrostatic force microscopy. Nano letters, 11 (6), pp. 2324–8, 2011.
♦ Curtin a. E., Fuhrer M.S., Tedesco J.L., Myers–Ward R.L., Eddy C.R., Gaskill D.K.: Kelvin probe microscopy and electronic transport in graphene on SiC(0001) in the minimum conductivity regime. Applied Physics Letters, 98 (24), p. 243111, 2011.
♦ Mesa B., Magonov S.: Novel diamond/sapphire probes for scanning probe microscopy applications. Journal of Physics: Conference Series, 61, pp. 770–774, 2007.
♦ Arnason S.B., Rinzler a. G., Hudspeth Q., Hebard a. F.: Carbon nanotube–modified cantilevers for improved spatial resolution in electrostatic force microscopy. Applied Physics Letters, 75 (18), pp. 2842–2844, 1999.
♦ Martin Y., Abraham D.W., Wickramasinghe H.K.: High–resolution capacitance measurement and potentiometry by force microscopy. Applied Physics Letters, 52 (13), p. 1103, 1988.
♦ Ankudinov a. V., Kotel'nikov E.Y., Kantsel'son a. a., Evtikhiev V.P., Titkov a. N.: Cross–sectional electrostatic force microscopy of semiconductor laser diodes. Semiconductors, 35 (7), pp. 840–846, 2001.
♦ Ballif C., Moutinho H.R., Al–Jassim M.M.: Cross–sectional electrostatic force microscopy of thin–film solar cells. Journal of Applied Physics, 89 (2), p. 1418, 2001.
♦ Hong J.W., Khim Z.G., Hou a. S., Park S.–il: Noninvasive probing of high frequency signal in integrated circuits using electrostatic force microscope. Review of Scientific Instruments, 68 (12), pp. 4506–4510, 1997.
♦ Belaidi S., Lebon F., Girard P., Leveque G., Pagano S.: Finite element simulations of the resolution in electrostatic force microscopy. 243, pp. 239–243, 1998.
♦ Guriyanova S., Golovko D.S., Bonaccurso E.: Cantilever contribution to the total electrostatic force measured with the atomic force microscope. Measurement Science and Technology, 21 (2), p. 25502, 2010.
♦ Bouchiat V., Faucher M., Fournier T., Pannetier B., Thirion C.: Resistless patterning of quantum nanostructures by local anodization with an atomic force microscope. Microelectronic Engineering, 62 (1)-(3), pp. 517–522, 2002.
♦ Chen L., Ludeke R., Cui X., Schrott A.G., Kagan C.R., Brus L.E.: Electrostatic field and partial Fermi level pinning at the pentacene–SiO(2) interface. The journal of physical chemistry. B, 109 (5), pp. 1834–8, 2005.
♦ Annibale P., Albonetti C., Stoliar P., Biscarini F.: High–resolution mapping of the electrostatic potential in organic thin–film transistors by phase electrostatic force microscopy. The journal of physical chemistry. A, 111 (49), pp. 12854–12858, 2007.
♦ Gotszalk T., Grabiec P., Rangelow I.W.: Application of electrostatic force microscopy in nanosystem diagnostics. Materials Science–Poland, 21 (3), pp. 333–339, 2003.
♦ Nishi K., Hosokawa Y., Kobayashi K., Matsushige K., Yamada H.: Highly Sensitive Electrostatic Force Detection Using Small Amplitude Frequency– Modulation Atomic Force Microscopy in the Second Flexural Mode. e–Journal of Surface Science and Nanotechnology, 9, pp. 146–152, 2011.
♦ Gotszalk T., Radojewski J.: Fabrication of multipurpose piezoresistive Wheatstone bridge cantilevers with conductive microtips for electrostatic and scanning capacitance microscopy. pp. 3948–3953, 1998.
♦ Nonnenmacher M., O'Boyle M.P., Wickramasinghe H.K.: Kelvin probe force microscopy. Applied Physics Letters, 58 (25), pp. 2921–2923, 1991.
♦ AD580 datasheet, Analog Devices Inc. (C00525)-(0)–(8/04(B)), 2004.
♦ Szymoński M., Goryl M., Krok F., Kolodziej J.J., Mongeot F.B.D.: Metal nanostructures assembled at semiconductor surfaces studied with high resolution scanning probes. Nanotechnology, 18 (4), p. 044016, 2007.
♦ Glatzel T., Zimmerli L., Koch S., Such B., Kawai S., Meyer E.: Determination of effective tip geometries in Kelvin probe force microscopy on thin insulating films on metals. Nanotechnology, 20 (26), p. 264016, 2009.
♦ Bergbauer W., Lutz T., Frammelsberger W., Benstetter G.: Kelvin probe force microscopy - An appropriate tool for the electrical characterisation of LED heterostructures. Microelectronics and Reliability, 46 (9)-(11), pp. 1736–1740, 2006.
♦ Hoppe H., Glatzel T., Niggemann M., Hinsch a, Lux–Steiner M.C., Sariciftci N.S.: Kelvin probe force microscopy study on conjugated polymer/fullerene bulk heterojunction organic solar cells. Nano letters, 5 (2), pp. 269–274, 2005.
♦ Lüttich F., Lehmann D., Graaf H., Zahn D.R.T., Borczyskowski C.V.: Kelvin–probe studies of n–conductive organic field–effect transistors during operation. Physica Status Solidi (C), 7 (2), pp. 452–455, 2010.
♦ Avila A., Bhushan B.: Electrical Measurement Techniques in Atomic Force Microscopy. Critical Reviews in Solid State and Materials Sciences, 35 (1), pp. 38–51, 2010.
♦ Okamoto K., Sugawara Y., Morita S.: The elimination of the ''artifact'' in the electrostatic force measurement using a novel noncontact atomic force microscope / electrostatic force microscope. Applied Surface Science, 188, pp. 381–385, 2002.
♦ Machleidt T., Sparrer E., Kapusi D., Franke K.–H.: Deconvolution of Kelvin probe force microscopy measurements-methodology and application. Measurement Science and Technology, 20 (8), p. 84017, 2009.
♦ Cakmak B., Karacali T., Biber M.: Investigation of Q–switched InP–based 1550nm semiconductor lasers. Optics & Laser Technology, 44 (5), pp. 1593–1597, 2012.
♦ Rothenbach C. a., Gupta M.C.: High resolution, low cost laser lithography using a Blu–ray optical head assembly. Optics and Lasers in Engineering, 50 (6), pp. 900–904, 2012.
♦ Ankudinov a. V., Evtikhiev V.P., Ladutenko K.S., Titkov a. N., Laiho R.: Kelvin probe force microscopy of hole leakage from the active region of a working injection–type semiconductor laser diode. Semiconductors, 40 (8), pp. 982–989, 2006.
♦ Barvosa–Carter W., Twigg M., Yang M., Whitman L.: Microscopic characterization of InAs/In0.28GaSb0.72/InAs/AlSb laser structure interfaces. Physical Review B, 63 (24), pp. 1–11, 2001.
♦ Lochthofen A., Mertin W., Bacher G., Furitsch M., Brüderl G., Strauss U., Härle V.: Microscopic investigation of InGaN/GaN heterostructure laser diode degradation using Kelvin probe force microscopy. Journal of Physics D: Applied Physics, 41 (13), p. 135115, 2008.
♦ von Klitzing K.: Developments in the quantum Hall effect. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 363 (1834), pp. 2203–19, 2005.
♦ Delahaye F., Jeckelmann B.: Revised technical guidelines for reliable dc measurements of the quantized Hall resistance. Metrologia, 40, pp. 217–223, 2003.
♦ Benstetter G., Biberger R., Liu D.: A review of advanced scanning probe microscope analysis of functional films and semiconductor devices. Thin Solid Films, 517 (17), pp. 5100–5105, 2009.
♦ Martin Y., Wickramasinghe H.K.: Magnetic imaging by ''force microscopy'' with 1000 A resolution. Applied Physics Letters, 50 (20), pp. 1455–1457, 1987.
♦ Chim W.K.: Atomic and Magnetic Force Microscopy Imaging of Thin–Film Recording Heads. Scanning, 17, pp. 306–311, 1995.
♦ Lau J.W., Shaw J.M.: Magnetic nanostructures for advanced technologies: fabrication, metrology and challenges. Journal of Physics D: Applied Physics, 44 (30), p. 303001, 2011.
♦ Dumas–Bouchiat F., Champeaux C., Nagaraja H.S.S., Rossignol F., Lory N., Catherinot a., Blondy P., Cros D.: Nanometric copper and cobalt clusters deposited using pulsed laser ablation; AFM and MFM investigations. Thin Solid Films, 453-454, pp. 296–299, 2004.
♦ Szmaja W., Grobelny J., Cichomski M., Makita K., Rodewald W.: MFM study of sintered permanent magnets. Physica Status Solidi (a), 201 (3), pp. 550–555, 2004.
♦ Wawro A., Petroutchik A., Baczewski L.T., Kurant Z., Maziewski A.: Formation of magnetic dots in an ultrathin Co film forced by a patterned buffer. EPL (Europhysics Letters), 89 (3), p. 37003, 2010.
♦ Abelmann L., Bos A.V.D., Lodder C.: Magnetic Force Microscopy – Towards higher resolution. Magnetic Microscopy of Nanostructures. NanoScience and Technology, pp. 253–283, 2005.
♦ Alvarado S.F.: Understanding magnetic force microscopy. Experimental Techniques, 383, pp. 373–383, 1990.
♦ Leinenbach P., Memmert U., Schelten J., Hartmann U.: Fabrication and characterization of advanced probes for magnetic force microscopy. Applied Surface Science, 144–145, pp. 492–496, 1999.
♦ Kirtley J.R., Deng Z., Luan L., Yenilmez E., Dai H., Moler K.A.: Moment switching in nanotube magnetic force probes. Nanotechnology, 18 (46), p. 465506, Nov. 2007.
♦ Nenadović M., Štrbac S., Rakočević Z.: Quantification of the lift height for magnetic force microscopy using 3D surface parameters. Applied Surface Science, 256 (6), pp. 1652–1656, 2010.
♦ Nagano K., Tobari K., Ohtake M., Futamoto M.: Effect of Magnetic Film Thickness on the Spatial Resolution of Magnetic Force Microscope Tips. Journal of Physics: Conference Series, 303, p. 12014, 2011.
♦ Cambel V., Gregušová D., Eliáš P., Fedor J., Kostič I., Maňka J., Ballo P.: Switching Magnetization Magnetic Force Microscopy - An Alternative to Conventional Lift–Mode MFM. Journal of Electrical Engineering, 62 (1), pp. 37–43, 2011.
♦ Wiesendanger R.: Single–atom magnetometry. Current Opinion in Solid State and Materials Science, 15 (1), pp. 1–7, 2011.
♦ Ozimek M.: Wielowarstwowe kompozytowe ekrany elektromagnetyczne otrzymywane metodą impulsowego rozpylania magnetronowego, rozprawa doktorska, Politechnika Wrocławska. 2012.
♦ Thornton J.A.: Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology, 11 (4), pp. 666–670, 1974.
♦ Intel Corporation, Intel Ž Core TM i7 Processor Family for the LGA–2011 Socket Datasheet. North, 1 , 2011.
♦ Williams C.C., Wickramasinghe H.K.: Scanning thermal profiler. Applied Physics Letters, 49 (23), pp. 1587–1589, 1986.
♦ Zhou L., Xu G.. Q., Li S.F.. F.Y., Ho P.K.. K.H., Zhang P.. C., Ye K.. D., Wang W.. J., Lu Y.. F.: Scanning thermal microscopy and atomic force microscopy studies of laser–induced deposited metal lines. Applied Surface Science, 120 (1)–(2), pp. 149–158, 1997.
♦ Shi L., Plyasunov S., Bachtold A., McEuen P.L., A.: Scanning thermal microscopy of carbon nanotubes using batch–fabricated probes. Applied Physics Letters, 77 (26), p. 4295, 2000.
♦ Mills G., Weaver J.M.. M.R., Harris G., Chen W., Carrejo J., Johnson L., Rogers B.: Detection of subsurface voids using scanning thermal microscopy. Ultramicroscopy, 80 (1), pp. 7–11, 1999.
♦ Xie Z., Han L., Wei F., Wang X., Gu Y., Chen H.: An application of scanning thermal microscopy: mapping near field light–emission of a QW laser diode in operation. Materials Science and Engineering A, 292 (2), pp. 179–182, 2000.
♦ Kamińska E., Gołaszewska K., Piotrowska a., Kuchuk a., Kruszka R., Papis E., Szeloch R., Janus P., Gotszalk T., Barcz a.: Study of long–term stability of ohmic contacts to GaN. Physica Status Solidi (C), 1 (2), pp. 219–222, 2004.
♦ Ruiz F., Sun W.D., Pollak F.H., Venkatraman C.: Determination of the thermal conductivity of diamond–like nanocomposite films using a scanning thermal microscope. Applied Physics Letters, 73 (13), pp. 1802–1804, 1998.
♦ Szeloch R.F., Janus P., Serafińczuk J., Szecówka P.M., Jóźwiak G.: Characterization of fatigued Al lines by means of SThM and XRD: Analysis using fast Fourier transform. Microelectronics Reliability, 52 (4), pp. 711–717, 2012.
♦ Chen Y.J., Leong S.H., Huang T.L., Ho H.W., Ng V., Phang J.C.H.: Thermal effects induced lateral head shift of thermal flying height control perpendicular magnetic recording head. Journal of Physics D: Applied Physics, 43 (3), p. 035001, 2010.
♦ Sanders G.H.W., Roberts C.J., Danesh A., Murray A.J., Price D.M., Davies M.C., Tendler S.J.B., Wilkins M.J.: Discrimination of polymorphic forms of a drug product by localized thermal analysis. Journal of microscopy, 198 (Pt 2), pp. 77–81, 2000.
♦ Janus P., Szmigiel D., Weisheit M., Wielgoszewski G., Ritz Y., Grabiec P., Hecker M., Gotszalk T., Sulecki P., Zschech E.: Novel SThM nanoprobe for thermal properties investigation of micro– and nanoelectronic devices. Microelectronic Engineering, 87 (5)-(8), pp. 1370–1374, 2010.
♦ Wielgoszewski G., Sulecki P., Janus P., Grabiec P., Zschech E., Gotszalk T.: A high–resolution measurement system for novel scanning thermal microscopy resistive nanoprobes. Measurement Science and Technology, 22 (9), p. 094023, 2011.
♦ Mills G., Zhou H., Midha a., Donaldson L., Weaver J.M.R.: Scanning thermal microscopy using batch fabricated thermocouple probes. Applied Physics Letters, 72 (22), pp. 2900–2902, 1998.
♦ Chihashi T.U., Hoi N.C., Anigawa M.T., Shino M.A., Ugawara Y.S.: Carbon–Nanotube Tip for Highly–Reproducible Imaging of Deoxyribonucleic Acid Helical Turns by Noncontact Atomic Force Microscopy. Applied Physics, 39 (8), pp. 887–889, 2000.
♦ Rangelow I.W.W., Gotszalk T., Grabiec P., Edinger K., Abedinov N.: Thermal nano–probe. Microelectronic Engineering, 57-58, pp. 737–748, Sep. 2001.
♦ Janus P.: Zastosowanie mikroskopii termicznej bliskiego i dalekiego pola w badaniu zachowań termicznych mikrosystemów, rozprawa doktorska, Politechnika Wrocławska, 2003.
♦ Majumdar A., Lai J., Chandrachood M., Nakabeppu O., Wu Y., Shi Z.: Thermal imaging by atomic force microscopy using thermocouple cantilever probes. Review of Scientific Instruments, 66 (6), p. 3584, 1995.
♦ Kim S.–J., Ono T., Esashi M.: Thermal imaging with tapping mode using a bimetal oscillator formed at the end of a cantilever. The Review of scientific instruments, 80 (3), p. 033703, 2009.
♦ Brown E., Hao L., Cox D.C., Gallop J.C.: Scanning thermal microscopy probe capable of simultaneous electrical imaging and the addition of diamond tip. Journal of Physics: Conference Series, 100 (5), p. 052012, 2008.
♦ Hammiche a., Reading M., Pollock H.M., Song M., Hourston D.J.: Localized thermal analysis using a miniaturized resistive probe. Review of Scientific Instruments, 67 (12), p. 4268, 1996.
♦ McConney M.E., Kulkarni D.D., Jiang H., Bunning T.J., Tsukruk V.V.: A new twist on scanning thermal microscopy. Nano letters, 12 (3), pp. 1218–23, 2012.
♦ Marcyniuk A., Pasecki E., Pluciński M., Szadkowski B.: Podstawy metrologii elektrycznej, Wydawnictwa Naukowo–Techniczne, 1984.
♦ Trannoy N., Grossel P.: DC thermal microscopy: study of the thermal exchange between a probe and a sample. Nanotechnology, 10, pp. 805–811, 1999.
♦ Depasse F., Grossel P., Trannoy N.: Probe temperature and output voltage calculation for the SThM in A.C. mode. Superlattices and Microstructures, 35 (3)-(6), pp. 269–282, 2004.
♦ Lefe`vre S., Volz S.: 3ω–scanning thermal microscope. Review of Scientific Instruments, 76 (3), p. 33701, 2005.
♦ Stempflé P., Pantalé O., Djilali T., Njiwa R.K., Bourrat X., Takadoum J.: Evaluation of the real contact area in three–body dry friction by micro– thermal analysis. Tribology International, 43 (10), pp. 1794–1805, 2010.
♦ Ghosh S., Bao W., Nika D.L., Subrina S., Pokatilov E.P., Lau C.N., Balandin A.A.: Dimensional crossover of thermal transport in few–layer graphene. Nature materials, 9 (7), pp. 555–558, 2010.
♦ Subrina S., Kotchetkov D., Balandin A.A.: Thermal management with graphene lateral heat spreaders: A feasibility study. 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp. 1–5, 2010.
♦ Goyal V., Subrina S., Nika D.L., Balandin A.A.: Reduced thermal resistance of the silicon–synthetic diamond composite substrates at elevated temperatures. Applied Physics Letters, 97 (3), p. 031904, 2010.
♦ Iwan A., Mazurek B., Chuchmała A., Palewicz M., Hreniak A., Świeboda T., Malinowski M.: Dokumentacja Techniczna IEL OW nr 500–032400–026, ''Opracowanie sposobu syntezy i wytwarzania organicznych warstw aktywnych ogniw fotowoltaicznych na bazie polimerów ciekłokrystalicznych domieszkowanych nanokompozytami.'', 2011.
♦ Iwan A.: Nowe azometiny i poliazometiny o budowie liniowej, gwiaździstej i dendrytowej: synteza, przejścia fazowe i wybrane właściwości optoelektryczne, monografia, Prace Instytutu Elektrotechniki, Zeszyt 250, 2011.
♦ Palewicz M.: Organiczne materiały do wytwarzania ogniw fotowoltaicznych, rozprawa doktorska, Politechnika Wrocławska, 2012.
♦ Górnicka B.: Raport końcowy realizacji projektu badawczego rozwojowego MNSiW nr 0490/R/T02/2007/03: ''Nowoczesne elektroizolacyjne lakiery nasycające z nanonapełniaczami o ulepszonych właściwościach'', 2010.
♦ Górnicka B.: Izolacja z nanokompozytów polimerowych w zastosowaniu do silników elektrycznych niskiego napięcia, monografia, Prace Instytutu Elektrotechniki, Zeszyt 254, 2012.
♦ Halama A., Szubzda B., Paściak G.: Carbon aerogels as electrode material for electrical double layer supercapacitors-Synthesis and properties. Electrochimica Acta, 55 (25), pp. 7501–7505, 2010.
♦ Halama A., Szubzda B., Paściak G.: Effect of synthesis conditions on textural and electrochemical properties of resorcinol–formaldehyde porous carbon gels. Handbook of COST Action 452, 2012.
♦ Paściak G.: Raport z realizacji polsko–singapurskiego projektu bilateralnego nr 71/N–SINGAPUR/07/2010/0 ''Novel super ion–conductors for Intermediate Solid Oxide Cells (IT–SOFC).'', 2012.
♦ Mazurek W., Juchim S., Świeboda T.: Dokumentacja Techniczna IEL OW nr 500–6730–26, ''Absorbery promieniowania słonecznego z zastosowaniem nanorurek węglowych.'', 2008.

Example figure:

Hybrydowy obraz 3D topografii i mikroskopii sił elektrostatycznych przedstawiający aktywne struktury układu scalonego.