NanoSwing mode description.

The NanoSwing mode developed in our laboratory is imaging method derived from TappingMode. By utilizing the time resolved technique, the high-bandwidth torsional oscillations of the T-shaped cantilever (fig. 1) are analyzed and processed in order to perform the reconstruction of the force-distance curve (fig. 2). This approach enabled the mapping of the mechanical properties of the surface as well as certain tip-sample interaction phenomena: stiffness, adhesion force, tip-sample peak force and energy dissipation.

This mode was developed within frame of the research project no. MNISW N N505 466338.

Fig. 1 The optical microscope view of the cantilever (HMX from Bruker).
a - the cantilever,
b - the scanning tip,
c - the symmetry axis of the cantilever.
Fig.2 Typical force spectroscopy curve and related mechanical properties of the surface. The parameters are: A1, A2, A3 - approaching the tip to the surface,
R1, R2, R3 - retracting the tip from the surface,
F1 - snap-in force,
F2 - peak force,
F3 - adhesion,
E1 - energy dissipation for deformation,
E2 - energy dissipation for tip-sample separation.


Examples (click to enlarge)


Energy dissipation for deformation


Energy dissipation for tip-sample separation

Peak force

Test sample from Bruker: a blend of polystyrene and polyolefin elastomer (ethylene-octene copolymer) deposited on a silicon substrate with spin-cast method. The PS regions of the sample have elastic modulus numbers - approximately 2 GPa, while the copolymer regions have elastic modulus numbers - approximately 0.1 GPa.

Published works relating to developed technique:

Andrzej Sikora, Łukasz Bednarz, Grzegorz Ekwiński, Magdalena Ekwińska, The determination of the spring constant of T–shaped cantilevers using calibration structures, Measurement Science and Technology 25 (2014) 044015

Andrzej Sikora, Łukasz Bednarz, Mapping of the surface’s mechanical properties due to analysis of torsional cantilever bending in dynamic force microcopy, Scanning Probe Acoustic Techniques (series NanoScience and Technology), F. Marinello, D. Passeri, E. Savio (editors), Springer 2012, ISBN: 978–3–642–27493–0, 315–350

Andrzej Sikora, Łukasz Bednarz: The implementation and the performance analysis of the multi–channel software–based lock–in amplifier for the stiffness mapping with atomic force microscope (AFM), Bulletin of the Polish Academy of Sciences: Technical Sciences, 60(1) (2012) 83–88

A. Sikora, M. Woszczyna, M. Friedemann, M. Kalbac, F. –J. Ahlers, The AFM diagnostics of the graphene–based quantum hall devices, Micron 43 (2012) 479–486

Andrzej Sikora, Utilization of various atomic force microscopy techniques in investigation of liquid crystal compounds, Liquid crystalline organic compounds and polymers as materials XXI century: From synthesis to applications, Agnieszka Iwan, Ewa Schab–Balcerzak – editors, Transworld Research Network, 2011, 191–219

Andrzej Sikora, Łukasz Bednarz , Utilization of AFM mapping of surface's mechanical properties in diagnostics of the materials for electrotechnics, Proceedings of Electrotechnical Institute, Issue 253, 2011, str. 15–25

Andrzej Sikora, Łukasz Bednarz, Direct measurement and control of peak tapping forces in atomic force microscopy for improved height measurements, Measurement Science and Technology 22 (2011) 094005

Andrzej Sikora, Łukasz Bednarz, Mapping of mechanical properties of the surface by utilization of torsional oscillation of the cantilever in atomic force microscopy, Central European Journal of Physics, 9(2), 2011, 372–379

Andrzej Sikora Development and utilization of advanced atomic force microscopy techniques in diagnostics of the electrotechnical materials. Chosen problems Proceedings of Electrotechnical Institute, Issue 257, monograph, Warszawa 2012, ISSN: 0032–6216

Andrzej Sikora, Łukasz Bednarz, Procedura doboru parametrów oddziaływania ostrze–próbka w celu uzyskania optymalnej rekonstrukcji krzywej spektroskopii sił w trybie pomiarowym NanoSwing mikroskopii sił atomowych. Metrologia dzi¶ i jutro – 2011, red. W. Walendziuk, J. Jakubiec, M. Swiercz, Oficyna Wydawnicza Politechniki Białostockiej, Białystok 2011, ISBN: 978–83–62582–04–4, str. 199–212


AFM menu